HORLOGE MURALE : UNE APPLICATION
AVEC LE KIT DE DÉVELOPPEMENT 88HC11
ENCEINTE ACTIVE 2 VOIES AVEC H.P. FOCAL
AMPLIFICATEUR /MÉLANGEUR 5 ENTRÉES
2 x 50 Weff ET CORRECTEUR DE TONALITÉ
GÉNÉRATEUR SYNTHÉTISÉ : 0,1 Hz/102,4 kHz

ENCEINTE ACTIVE
2 VOIES

AMPLIFICATEUR
CORRECTEUR
MÉLANGEUR

AMPLI/MÉLANGEUR 5 ENTRÉES
NOËL continue chez Selectronic

"L'utopie est appelée à devenir réalité un jour ou l'autre..."

Ceci est une MICRO CAMÉRA. C'est une caméra Le petit fil droit qui en sort est l'antenne de son ÉMETTEUR VIDÉO. L'ensemble mesure (hors antenne) : 22 x 15 x 20 mm (pin hole).
La portée : jusqu'à 400 m en plein air.
La qualité d'image est vraiment étonnante.

Elles sont bien réelles et dispo chez Selectronic

Modèle 1
Objectif à mise au point réglable. Dim. : 22 x 15 x 34 mm.

L'ensemble comprend :
- La micro-caméra / émetteur, le bloc-secteur et un boîtier pour 4 piles R6 pour la caméra
- Le récepteur et son bloc secteur,
- les cordons de liaison.

L'ensemble micro-caméra avec objectif PIN-HOLE
115.0920-2 2590,00 F TTC
L'ensemble micro-caméra avec objectif réglable
115.0920-1 2590,00 F TTC

C'est encore une caméra ... également en COULEURS,
... mais celle-ci est ÉTANCHE à 20 m !

ÉTANCHE à 20 mètres

- Caméra couleur CCD 1/4".
- Boîtier étanche à 20 m en aluminium anodisé.
- 298.000 pixels : 512 (H) x 512 (V).
- Exposition automatique + Sensibilité : 3 lux.
- Rapport S/B : > 46 db.
- Objectif : 3.6 mm - F : 2.0.
- Distance de vision sous l'eau : 5 à 7 m.
- Avec 10 LEDs infra-rouge pour vision dans l'obscurité.
- Alimentation :
 - Caméra : 12 VDC / 110 mA
 - LEDs infra-rouges : 12 VDC / 110 mA.
- T° de fonctionnement : -10 à +45°C.
- Dimensions : Ø 49 x 56 mm + Poids : 150 g.
- La caméra est fournie avec cordon de liaison de 20 m et étui de fixation.

La caméra couleur ÉTANCHE 115.0919 2190,00 F TTC

Diodes LED blanches ULTRA-PUISSANTES

Vraiment éblouissantes !

- Boîtier cristal non diffusant.
- Puissance lumineuse donnée pour 3,6 V / 20 mA.
- Produit sensible à l'électricité statique.
- 2 tailles : 3 mm / 4,5 mm.
- Le lot de 10 en 3 mm 115.2159-10 289,00 F TTC
- Le lot de 10 en 5 mm 115.2161-10 289,00 F TTC

Émetteur VIDEO + AUDIO UHF

- Module de transmission HF vidéo + audio. 479,5 MHz (canal 22).
- Très haute qualité d'image et du son.
- Câble d'alimentation 1 m.
- Puissance HF : 1 mW + Allum. : 5 VDC / 90 mA.
- Dimensions : 25 x 25,5 x 8 mm.
- Le module AUREL MAVVUH6479 115.1058 199,00 F TTC

La REVUE du SON n° 246 (11/00)
"... joue dans la cour des grands !"
"Un plaisir d'écouter sans cesse renouvelée"

HAUTE FIDÉLITÉ n° (11/00)
"Une neutralité exemplaire existant..."

Documention sur simple demande

Le NOUVEL ampli MOS-FET "High-end" de Selectronic

Escrin de France - 39 - DOLE
03.84.72.12.63

Catalogue Général 2001
Envoi contre 30F (timbres-Poste ou chèque)

Conditions générales de vente : Règlement à la commande : frais de port et d'emballage 25F. FRANCO à partir de 800F. Contrôle remboursement : + 10F. Tous nos prix sont TTC

MAGASIN DE PARIS
11, place de la Nation Paris X (Métro Nation)

MAGASIN DE LILLE
86 rue de Cambrai (Près du CROUS)

Selectronic
38, rue de Cambrai - 59022 Lille Cedex
Tél. 03 28 55 328 - Fax 03 28 55 329
www.selectronic.fr
HORLOGE MURALE DOTÉE D'UNE FONCTION THERMOMÈTRE
APPLICATION DU KIT DE DÉVELOPPEMENT 68HC11 (3ÈME PARTIE)

Ce module est le dernier élément de notre projet. Afin d'obtenir un confort d'utilisation suffisant, les réglages de l'heure et autres options seront pilotés à distance à partir d'une radiocommande HF. Câblé sur le port C du kit 68HC11, ce module totalement indépendant pourrait rendre de nombreux autres services (gradateur de lumière radiocommandé, commande à distances d'appareils électroménagers, etc.).

PETITES ANNONCES GRATUITES

ENCEINTE ACTIVE 2 VOIES OPUS 2VA

L'OPUS 2VA est une enceinte «active» à 2 voies. Le qualificatif «active» signifie qu'elle incorpore un filtre électronique à deux voies, deux amplificateurs de puissance et une alimentation. Elle est donc directement compatible avec le niveau du signal de sortie d'un lecteur de CD ou d'un pré-amplificateur-mélangeur. La mise en fonctionnement est télécommandée en H.F.

AMPLIFICATEUR / MÉLANGEUR
5 ENTREES MONO 2 x 50 Weff
AVEC CORRECTEUR DE TONALITÉ

Voilà de quoi satisfaire un bon nombre d'instrumentistes que cette réalisation qui permet de recevoir cinq signaux de provenances diverses, telles que guitares, microphones, claviers ou autres sources de modulation. Peu onéreux et sans aucune mise au point, cet «Amplificateur/Mélangeur» intéressera, nous le pensons, quantité de jeunes musiciens désireux de se réunir pour exprimer leur talent.
BON DE COMMANDE
à adresser aux EDITIONS PÉRIODES, Service abonnements, 5, boulevard Ney 75018 Paris

N° 136
Photocopies de l'article (Prix de l'article : 30 F) :
- Amplificateur stéréo à tubes. Double push-pull d'EL84 - 2 x 28 Wef (1ère partie)

N° 137
Photocopies de l'article (Prix de l'article : 30 F) :
- Amplificateur stéréo à tubes. Double push-pull d'EL84 - 2 x 28 Wef (2ème partie)

N° 138
Photocopies de l'article (Prix de l'article : 30 F) :
- Amplificateur à tubes EL84, 2x5 Wef en classe A

N° 140
Photocopies de l'article (Prix de l'article : 30 F) :
- Le Quatuor, amplificateur classe A de 2x20 Wef à tubes EL84

N° 143
- Les principes des haut-parleurs
- Découpe PAL/RVB
- Traceur de courbes pour transistors NPN/PNP
- L'Octuor, bloc ampli mono de 54 Wef / 4x8-36 Ohm, quadruple push-pull d'EL84

N° 145
Photocopies de l'article (Prix de l'article : 30 F) :
- Réalisez un kit de développement évolutif pour microcontrôleur 68HC11 (1ère partie)

N° 146
Photocopies de l'article (Prix de l'article : 30 F) :
- Réalisez un kit de développement évolutif pour microcontrôleur 68HC11 (2ème partie)
- Le CLASSIQUE : amplificateur de 2 x 20 Wef avec pentodes EL34

N° 147
- Kit de développement pour 68HC11, les interruptions, le Timer et la programmation de l’EEPROM (3ème partie)
- Étude et réalisation d’une alarme temporisée avec sirène et coupure d’alimentation sur moteur
- Kit ALCION, enceinte 3 voies de Triang
- Préampli stéréo à tubes ECF82 pour entrées « haut niveau » ; lecteur CD-Tuner, Magnétophone

N° 148
Photocopies de l'article (Prix de l'article : 30 F) :
- Kit de développement pour 68HC11 (4ème partie)
- Gestion de claviers matriciels
- Préamplificateur avec triode/pentode ECL86 en « MU follower ».

N° 149
- En Savoir Plus sur : le tube électronique (la lampe)
- Kit de développement pour 68HC11 (5ème partie)
- Digicode programmable avec alarme
- Alim stab HT pour préamplificateurs à tubes
- Le TDA2904 : un bloc de puissance 4 canaux
- Booster automobile 4 x 75 Wef ou amplificateur de sonorisation autonome
- Micro variateur et Switch

N° 151
- Kitty 255, Caméra CCD d’instrumentation, réalisation de la tête de caméra (2ème partie)
- Le PUSH : amplificateur de 2 x 12Wef à ECL86
- Push-Pull en ultra-linéaire
- CAPACITÉ Numérique 20 000 points
- Châssis triphonique de 3 x 75 Wef pour sonorisation ou écoute Hi-Fi (2ème partie)

N° 152
Photocopies de l'article (Prix de l'article : 30 F) :
- Un caisson d’extrême grave avec les HP 13 VX FOGLA ou PR330M AUDAX (1ère partie)
- La triode 300B. Amplificateur de 2 x 9 Wef en pure classe A sans contre-réaction

N° 153
- KITTY 255, Caméra CCD d’instrumentation, l’alimentation universeelle (4ème partie)
- Multirép 4 rampes 36 000 points (1ère partie)
- Un caisson d’extrême grave avec le haut-parleur 13XJ Focal (2ème partie)
- La triode 300B. Amplificateur de 2 x 9 Wef en pure classe A sans contre-réaction (2ème partie)
- Amplificateur à 2 tubes en série avec pentodes EL84

N° 154
- Multirép 4 rampes 35 000 points (2ème partie)
- La 300B en push-pull classe A 20 Wef sans contre-réaction
- Jeu de lumières 4 voies. Des lumières au rythme des notes
- KITTY 255 : caméra CCD : l’interface 8 bits (5ème partie)

N° 155
- Un caisson d’extrême grave avec 13XJ Focal ou PR330M Audax. Le filtre actif de voie
- KITTY 255 : caméra CCD d’instrumentation : présentation du logiciel d’acquisition (6ème partie)
- Générateur BF 20 Hz à 200 Hz
- Compte tour pour cyclo ou scooter
- Le DQ : un push-pull ultra-linéaire de pentodes 7189 ou EL84

N° 156
- En Savoir Plus Sur : La protection des transistors de puissance bipolaires
- Module amplificateur de 150 Wef à TDA2904
- Filtre actif 2 voies pour caisson d’extrême grave (4ème partie)
- Caméra CCD d’instrumentation équipée du capteur TC237 (7ème partie)
- Générateur volué 1 Hz - 1,5 MHz avec marqueur

N° 157
- La 6L6 : Reine des tétrodes. Double Push-Pull stéréo de 2 x 40 Wef
- Utiliserez votre oscilloscope en écran de télévision
- Filtre actif 3 voies pour caisson de grave et satellites : le passe-bande (5ème partie)
- Générateur volué 1 Hz - 1,5 MHz avec marqueur (2ème partie)
- Les déphaseurs : le double cathodes

N° 158
- Commande d’un moteur Pas à Pas biorelais avec le kit de développement 68HC11
- Préamplificateur bas niveau à tubes ECC83/EC881 pour platines vinyls ou microphones
- Enceinte deux voix Euria 2000
- Générateur volué 1 Hz - 1,5 MHz avec marqueur (3ème partie)

N° 159
- Commande d’un moteur Pas à Pas Unipolaire avec le kit de développement 68HC11
- Enceinte deux voix Euria 2000 (2ème partie)
- Générateur volué 1 Hz - 1,5 MHz avec marqueur
- Anti-Barkhausen (4ème partie)
- Le single : amplificateur de 2 x 8 Wef en classe A

N° 160
- Caméra Kitty : l’interface 12 bits (6ème partie)
- Les Tubes KT88 / KT90 : un push-pull en ultra-linéaire classe AB1 de 2 x 50 Wef
- BC Acoustique/SEAS : Kits d’enceintes pour le Home Cinema
- Le Single II : amplificateur de 2 x 11 Wef en classe A avec tétrodes 6550

N° 161
- Caméra CCD d’instrumentation : programmation de la carte 12 bits (6ème partie)
- La Coaxiale : mini enceinte de 5 litres
- Le Triode 845 : amplificateur de 2 x 18 Wef en Single End sans contre-réaction (1ère partie)

N° 162
- Boîte de mesure secteur
- GFB Synthésités 0.1 Hz - 102,4 kHz (1ère partie)
- Horloge murale avec fonction Thermomètre : une application du kit de développement 68HC11
- Le Triode 845 : amplificateur de 2 x 18 Wef en Single End sans contre-réaction (2ème partie)

N° 163
- Horloge murale avec fonction Thermomètre : une application du kit de développement 68HC11 (2ème partie)
- Filtre actif 2 voies à triodes ECC83, pente d’atténuation de 12 dB/octave
- GFB Synthésités 0.1 Hz - 102,4 kHz : 2 sorties multiformats à déphasage programmé ou sinus volué avec marqueur (2ème partie)
- Le Triode 845 (3ème partie)
- La Mesure des résistances de faibles valeurs Milli-Ohmmètre de précision

Je vous fais parvenir ci-joint le montant

de F par CCP ☐ par chèque bancaire ☐
par mandat ☐

30 F le numéro (frais de port compris)

NOM .. PRÉNOM ..
N° .. RUE ..
CODE POSTAL VILLE ..

Quelques numéros encore disponibles (prix 30 F):
122, 123, 125, 132, 133, 135, 141, 144, 150

Je désire :

N° 143 N° 147 N° 149 N° 151
N° 153 N° 154 N° 155 N° 156
N° 157 N° 158 N° 159 N° 160
N° 161 N° 162 N° 163

Photocopies d’article (préciser l’article) :

N° 136 ☐ N° 137 ☐ N° 138 ☐ N° 140 ☐
N° 145 ☐ N° 146 ☐ N° 147 ☐ N° 152 ☐
Câble Haute-parleur CULLMANN
Câble modulation mono

Potent. SFERNICE P11

Condensateur haute tension C039 ou FELSIC 85
Condensateur axiaux haute tension SIC S740

Condensateurs STYRFLEX [axial] 160V

Condensateurs STYRFLEX [axial] 630V

Condensateurs POLYPROPYLENE

Condensateurs DIVERS

Fiches Professionnelles XLR NEUTRK

Jack 6,35 Importation

Câble OFC audio professionnel

Câble Pro

Fiches RCA PRO

Fiches Cables SVHS

Fiches Ficheurs

Câble Câble OFC audio professionnel

Câble Ficheur

Câble Ficheur
HORLOGE MURALE

DOTÉE D’UNE FONCTION THERMOMÈTRE
APPLICATION DU KIT DE DÉVELOPPEMENT 68HC11

Ce module est le dernier élément de notre projet. Afin d’obtenir un confort d’utilisation suffisant, les réglages de l’heure et autres options seront pilotés à distance à partir d’une radio-commande HF. Câble sur le port C du kit 68HC11, ce module totalement indépendant pourrait rendre de nombreux autres services (gradateur de lumière radiocommandé, commande à distances d’appareils électroménagers, etc.).

Pour ne pas réinventer la roue, nous allons doter notre pendule murale d’un récepteur/décodeur intégré produit par AUREL, le Dynacoder. Comme on peut le constater sur les clichés photographiques, ce produit se compose d’un petit émetteur à deux voies (nommé «Dyna-TX2»), associé à un module récepteur «RX-Dyna». Cet ensemble, qui fonctionne dans la bande des 433 MHz, utilise un codage 32 bits du type «rolling code», c’est-à-dire à changement dynamique de code. Grâce à la forte intégration du récepteur, notre module de réception sera doté d’un minimum de composants et alimenté par le connecteur HE10-20 du kit de développement.

SCHÉMA STRUCTUREL DU MODULE

Il est indiqué en figure 1. Le récepteur est doté de deux sorties indépendantes, D0 et D1. Ces sorties sont directement dirigées sur le port C du kit (broches 15 et 16 du connecteur J1). Les chronogrammes de la figure 2 présentent un cycle de fonctionnement standard du dispositif de transmission. Lorsque l’utilisateur appuie sur une touche de la télécommande, la voie non sollicitée passe au niveau bas tandis que l’autre délivre une série d’impulsions négatives. Remarquez que la dernière voie sollicitée reste toujours au niveau haut, même après le relâchement de la touche. Afin que toute action sur un bouton poussoir de la télécommande soit immédiatement détectée par le microcontrôleur, les sorties D0 et D1 sont combinées et dirigées sur l’entrée d’interruption IRQ (broche 3 du connecteur J1). Ce sont les diodes D2 et D3 qui permettent de combiner les signaux délivrés par D0 et D1 (signal UR2 sur le chronogramme). Cependant, les impulsions délivrées par les sorties sont trop rapprochées pour être directement exploitées dans notre application (elles sont espacées de 75 ms, ce qui correspond à un rythme d’environ 14 impulsions par seconde !). En conséquence, le signal d’interruption est dirigé sur un étage monostable réalisé autour de IC1:A et IC1:B.

Le réseau [R1-C2] assure une temporisation légèrement supérieure à 100 ms, ce qui permet de masquer une impulsion d’entrée sur deux. Si vous trouvez que l’intervalle obtenu est encore trop court (150 ms entre deux impulsions), il suffit d’augmenter la valeur de R1 ou de C1. Le signal délivré par IC1:B est visible sur le chronogramme de la figure 2. L’entrée d’interruption IRQ du 68HC11 peut être programmée pour fonctionner aussi bien sur fronts descendants que sur niveau bas. Pour éviter le soucis d’avoir à configurer l’entrée IRQ ultérieurement (par programmation, à partir du registre «option» sur le 68HC11), IC1:C assure une mise en forme impulsionnelle de moins de 10 µs.

Cette forme de signal donnera satisfaction dans tous les cas. Enfin, R4 est simplement une résistance de protection pour IC1. En effet, si une
Figure 1 : module «Récepteur» de télécommande

Figure 2 : chronogrammes de fonctionnement du récepteur

Figure 3 : phase d'initialisation (synchronisation)

touche est enfoncée sur le kit par inadvertance, la broche IRQ est susceptible d'être court-circuitée à la masse, ce qui serait indélicat pour la sortie de notre porte logique.

PHASE D'INITIALISATION DE LA RADIOCOMMANDE

Rappelons que nous avons affaire à une télécommande à changement dynamique de code. Pour synchroniser l'émetteur et le récepteur, une phase d'initialisation sommaire est nécessaire. A la mise sous tension du récepteur, ce dernier nous signale qu'il est prêt à communiquer par l'émission d'une dizaine d'impulsions sur la sortie LED (broche 17). Il suffit alors d'appuyer sur l'une des touches de la télécommande jusqu'à l'allumage de la diode électroluminescente, qui est maintenu 2 secondes par le récepteur pour acquittement. Un second appui sur la télécommande permet d'obtenir le dernier acquittement du récepteur, signalant alors qu'il est correctement synchronisé avec l'émetteur. Cette procédure est illustrée sur les chronogrammes de la figure 3.
LE MODULE DE RADIOMAND

Figure 4 : tracé des pistes

![Image of circuit board](image)

Figure 5 : implantation

![Image of implantation](image)

NOMENCLATURE DES COMPOSANTS

<table>
<thead>
<tr>
<th>- Résistances</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 : 220 kΩ</td>
</tr>
<tr>
<td>R2 : 1,5 kΩ</td>
</tr>
<tr>
<td>R3 : 15 kΩ</td>
</tr>
<tr>
<td>R4 : 100 Ω</td>
</tr>
<tr>
<td>R5 : 220 Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- Condensateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 : 22 μF / 25 V</td>
</tr>
<tr>
<td>C2 : 680 nF</td>
</tr>
</tbody>
</table>

| C3 : 1 nF |
| C4, C5 : 220 nF |

- Composants actifs

<table>
<thead>
<tr>
<th>IC1 : HCF4081</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ou CD4081)</td>
</tr>
</tbody>
</table>

| IC2 : module Dynacoder RX-433 |
| (fabricant AUREL) |

| D1 à D4 : 1N4148 |
| D5 : LED rouge ø5 mm |

Prévoir pour l'émetteur :

Module Dynacoder «TX-2TK-SAW433»

- Divers

Embasse HE10/20 (coudée)
Connecteurs HE10/20 x 2
+câble en nappe (20 brins)
Support 14 broches
Barrette tulipe 20 broches

RÉALISATION PRATIQUE

Le tracé des pistes, indiqué en figure 4, est réalisé en simple face. Toutefois, il faudra implanter 5 straps sur le circuit imprimé, l'un d'entre eux étant situé sous le module récepteur.

L'implantation des composants est indiquée en figure 5. Il est recommandé d'implanter IC1 et IC2 sur un support. En ce qui concerne IC2, il existe des barrettes-support sècables.

La liaison avec le kit 68HC11 sera réalisée à partir d'un câble en nappe de 20 brins doté de connecteurs HE10/20 femelles. Pour limiter la hauteur du module de réception, nous avons prévu de positionner le récepteur à l'horizontale. Dans ce cas, les broches du module récepteur seront repliées à 90°, et le module sera avantageusement maintenu dans cette position avec un point de colle ou un tampon adhésif double-face (mais c'est facultatif).

Il n'est pas nécessaire de prévoir une antenne externe : le module est suffisamment sensible pour assurer une portée de quelques mètres. Toutefois, si la portée s'avère insuffisante dans votre cas, il suffit de câbler sur la sortie antenne 25 cm d'un fil multibrins gainé.

ASPECTS LOGICIELS

Pour tester rapidement le récepteur radio, nous vous proposons une application relativement simple du type « comptage/décomptage », en attendant les procédures logicielles définitives de l'horlogerie murale.

Une variable «DATA» sera incrémentée à chaque appui bref sur la touche de droite de l'émetteur, ou décémentée lors d'un appui bref sur la touche de gauche. La gestion de la radiocommande sera évidemment effectuée sous interruption. Etant donné la simplicité du programme, la totalité du code tient dans la zone RAM du microcontrôleur.

PROGRAMME PRINCIPAL

Il a été placé à partir de l'adresse $0020 de la RAM du 68HC11. Comme l'indique le listing de la figure 6, il est vraiment très dépouillé. Après une initialisation des variables du système (localisation de la pile à $00C0, puis initialisation du port C en entrée), la variable DATA est initialisée à 0. Ensuite, elle est convertie en code « 7 segments » à partir de la table de transcodage située à l'adresse $0000 dans la RAM, puis affichée sur le kit. Enfin, l'interruption IRQ est validée (CLI) juste avant que le programme principal boucle sur lui-même.
KIT DE DÉVELOPPEMENT 68HC11

** COMPTAGE / DECOMPTAGE PAR RADIocomMANDE **
** Figure 6 : programme principal **

<table>
<thead>
<tr>
<th>Variable</th>
<th>Équation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTB</td>
<td>$1004</td>
</tr>
<tr>
<td>PORTC</td>
<td>$1003</td>
</tr>
<tr>
<td>DDRC</td>
<td>$1007</td>
</tr>
<tr>
<td>DATA</td>
<td>$0010</td>
</tr>
<tr>
<td>ORG</td>
<td>$0000</td>
</tr>
<tr>
<td>FCB</td>
<td>$3F, $06, $5B, $4F, $66, $6D, $7D, $07</td>
</tr>
<tr>
<td>FCB</td>
<td>$7F, $6F, $77, $7C, $39, $5E, $79, $71</td>
</tr>
<tr>
<td>ORG</td>
<td>$0020</td>
</tr>
<tr>
<td>LDS</td>
<td>#$C0</td>
</tr>
<tr>
<td>LDAA</td>
<td>#$00</td>
</tr>
<tr>
<td>STAA</td>
<td>DDRC</td>
</tr>
<tr>
<td>CLRB</td>
<td>DATA</td>
</tr>
<tr>
<td>CLRA</td>
<td>#$0000</td>
</tr>
<tr>
<td>LDX</td>
<td>X</td>
</tr>
<tr>
<td>ABX</td>
<td></td>
</tr>
<tr>
<td>LDAA</td>
<td>X</td>
</tr>
<tr>
<td>STAA</td>
<td>FRTB</td>
</tr>
<tr>
<td>CLI</td>
<td></td>
</tr>
<tr>
<td>BOUCLE</td>
<td>BRA BOUCLE</td>
</tr>
</tbody>
</table>

Emetteur / Récepteur Dynacoder RX-433 et TX-2TK-SAW433 de fabrication AUREL

SOUS-PROGRAMME D'INTERUPTION IRQ

Le sous-programme d'interruption IRQ assure la totalité des fonctions de l'application, comme le montre l'organigramme de la figure 7. Une légère temporisation de quelques microsecondes permet de s'assurer que la lecture du port C a lieu après la fin de l'impulsion négative de D0 ou D1 (on recherche un niveau haut sur les entrées du port C).

La lecture du port C est donc suivie de la détection de la sortie qui est active (c'est-à-dire qui est au niveau haut). Si D1 est actif, on incrémenté DATA, sinon on décémenté DATA. Dans les deux cas, on vérifie si on a dépassé la fin d'un cycle, afin de corriger la valeur de DATA :

* si DATA est supérieur à $0F en fin de comptage, DATA est remis à 0.
* si DATA est égal à $FF en fin de décomptage, DATA est remis à $0F (quand DATA a pour valeur 0, une décrémentation de cet octet donne pour résultat $FF !).

Quelle que soit la valeur affectée à notre variable à la fin du traitement, elle est transcodée et affichée sur le port B (c'est l'afficheur des unités sur le kit qui est utilisé, donc inutile de connecter le module d'affichage pour ce test). Le listing du sous-programme d'interruption est indiqué en figure 8.

EN ATTENDANT LA SUITE (ET FIN) DE CE PROJET...

A ce stade, vous avez tous les éléments en main pour mettre au point une application complète d'une horloge à affichage digital dont les fonctions sont commandées à distance. Ce projet étant à vocation pédagogique, n'hésitez pas à vous lancer dans cette aventure. L'affectation des touches de la télécommande peut être envisagée ainsi :

- **Touche de gauche** => sélection des modes de fonctionnement :
 - **HR** : réglage de l'heure (clignote ment des afficheurs « heure »).
- MN : réglage des minutes (cligno-
tement des afficheurs «minute»).
- NL : affichage normal (affichage
heure ou température).
- Touche de droite => exécution des
réglages :
 - En mode HR : Incrémentation de
l'heure 00 => 23.

- En mode MN : Incrémentation
des minutes 00 => 59.
- En mode NL : sélection horloge /
température int. / température ext.

Rassurons les moins téméraires, une
application logicielle «clé en mains»
yousera proposée sous peu ! Étant
donné la lourdeur logicielle d'une telle
entreprise, un article indépendant lui sera
exclusivement consacré. Vous y trouvez
egalement des organigrammes et des
explications détaillées pour la plupart
des fonctions de l'horloge.

Bernard Dalstein
Petites annonces gratuites

Vds tr. alim : 400 F + tr. sortie : 500 F pour PP300B, Led N°154, condo 1000 µF/450 V : 150 F. Tél. : 02 38 90 94 07
Vds géné de fonction TBF CRC : 500 F + oscilloscope Métrix OK 710 : 900 F + multimètre Métrix : 300 F + magnétophone à bandes : 300 F et 500 F. Tél. : 05 66 87 10 07 le soir

Cherche lampemètre Métrix U61C, même en panne, mais complet ou à défaut U61B ou bloc commutateur 9 positions M-F-G1-G2-G3-А-5K-10K pour U61, tous types. Tél. : 01 47 41 10 41

Part. achète uniquement si composants d'origine, et très bon état, enceintes voix du théâtre Altec ou modèles 190 + 215 ou/et gros moniteurs JBL. Tél. : 06 87 92 72 74

Suite à réalisation ampli 845, projet 2 amplis mono, contacts pour achats de composants en groupe : condo, transfo, tubes. Tél. : 05 56 87 39 20 dom, 13h15h

Recherche schéma ampli transisor Audiostyle Carat, vends ou échange vieux filtres JBL. Tél. : 04 92 51 47 92 HR

Vds transfo isolement 630 VA avec écran + filtre actif 2 voies Led n°155, Fc 500 Hz, 24 dB. Tél. : 02 41 55 26 36

Vds livres et revues électronique, demandez liste à Phil Tanguy, 3 Rue Gabriel Fauré, 56600 Lanester, contre 2 timbres.

Recherche ampéromètre 0,9 mA, 50 µA pour Métrix type 310 + pentodes 6973 + schémas ampli Thorens CV24 et Harman/Kardon A230. Tél./Fax : 02 98 57 12 76
Vds préampli passif (volume réseau de résistances) : 1000 F + tubes 310 WE-1x300B WE usagée, câble Leedh 2x1 m. Tél. : 02 41 20 02 39

Je vends mon labo de mesures BF, appareils au détail, multimètre, génie de bruit, de fonctionnement, alims... Tél. : 06 19 20 41 50

Vds oscillo double trace, révisé D11 : 400 F + téléphones 1011 : 600 F + Métrix 2x15 : 900 F + 2x20 : 1100 F + distorsiomètres Lie EHD35-40 et 50. Tél. : 02 48 64 68 48

Vds lampes neuvres 523, VT145, 6J5G, 6V6G, GT, GY, 4Y25 (super 807), 6L6QA, 6N7G, GT, GY, 46, EF37A, VT105/M16 (idem ML4 en 6V) culot porcelaine. Tél. : 01 34 66 34 53 ou fax : 01 34 66 34 17

Vds tubes : 5Z3, 5X4G, 6X5GT, EL88 Mullard, C3E, EMM801, EMM803, F410, 813, KT66GEC, 5R4GYB, 6SH7AN, EM4, EM34, EL34 Ultron, HP Supravox 215RF (SEM) : 300 F + Dinghy II 500. Tél. : 02 82 54 42 41

Vds oscilloscope à tubes 5 MHz : 500 F + appareils divers : 200 F + pièces alimentations variables de 0 V à 40 V - 2 A : 300 F + 0 V à 9 V : 300 F. Pont de Weston Tél. : 05 56 87 10 07

Vds tubes neufs 2A3 Sovtac 6A5G, USA, enceintes mini Onken, Condo 4,7 µF/1600 V. Tél. : 02 97 66 86 94

Achète ssi tbe 2 x Altec-Lansing 190 + 215. Tél. HB : 04 73 36 81 29

Recherche plans et schémas de l'ampli-tuner Tandberg TR2075 pour dépannage. Tél. HB : 04 74 95 26 39

Achète HP Siare 18VR, transfo de sortie, 2000 à 3000 Ω primaire avec prise écraf. Vds HP 38 cm JBL 2231H : 2700 F la paire. Tél. : 06 12 39 96 04

Recherche mécanisme ouverture tiroir, platine Philips CD 960/00R. Tél. : 04 92 20 53 55

Vds tweeters JBL 2405 : 2500 F + Fistex F164, neuf : 750 F les 2 + tweeter Selenium St324 : 500 F + 2 médium B&C BPE13, 100 dB, haut de gamme : 1000 F. Tél. : 03 80 48 05 88

Vds tubes neufs 6S7J Western Electric, 6C5 RCA, 6AU6 CI FTE. Recherche schéma Jason 210 et Fisher 400. Vds plat Braun PS500, TD126 MK3. Tél. : 04 67 87 97 92

Vds intégré Thorens PR15 mono, PP6L6 + tuner Technics STZ1L + 2 médium Dynaudio DS4 + tubes VT25 (10) NOS + nombreux divers tubes. Tél. : 01 42 22 09 22

Fabricant de circuits imprimés vend lots de chutes de verre époxi : 1 face ou 2 faces cuites en épaisseur de 8/10 à 24/10. Renseignements au 01 39 57 67 36

Vds 12 m de câble argent sans effet mémoire, fil massif 1 mm pour kits : 75 F le mètre, par 6 m en 0,8 mm : 60 F/m + câble modulation argent s. e. mémoire et sens de connexion et RCA WBT : 1000 F + idem avec 4 fiches Neutric : 800 F. Tél. : 04 91 73 37 14

Vds lot de 150 tubes divers, prix : 1500 F (à débattre), liste fournie contre enveloppe timbrée. Tél. : 01 46 86 47 40

Vds 2 HP Altec Lansing 3124 : 2700 F. Tél. : 01 43 97 37 24

Traduction de Datasheets et de documentations techniques, sobis@jeanmichel@freebee.fr

Audiophile amateur mais passionné, cherche à partager et échanger pour progresser avec d'autres personnes sur la Région Toulousaine. Jean Michel Tél. : 05 62 79 75 06

Vds platine tourne disques EM7930ST avec plusieurs têtes : 500 F. Tél. : 03 23 82 61 39

Achète colonnes haut de gamme Gaia Diade, bi-câblables, superbe musicalité : 5500 F la paire (valeur : 11000). Tél. : 04 91 49 76 55 après 19 h

A retourner à Éditions Périodes 5 bd Ney 75018 Paris
ENCEINTE ACTIVE 2 VOIES OPUS 2VA

L'OPUS 2VA est une enceinte «active» à 2 voies. Le qualificatif «active» signifie qu'elle incorpore un filtre électronique à deux voies, deux amplificateurs de puissance et une alimentation. Elle est donc directement compatible avec le niveau du signal de sortie d'un lecteur de CD ou d'un préamplificateur-mélangeur. La mise en fonctionnement est télécommandée en H.F.

Du point de vue électro-acoustique, les deux H.P. sont alignés temporellement, le diagramme de rayonnement est horizontal et la réponse aux basses fréquences en régime transitoire est absente de rebondissements. C'est un Bass-Reflex avec un évent débouchant à l'avant. Sa bande passante est au minimum de 40 Hz à 15 kHz.

Du point de vue esthétique, son allure est élégante lorsqu'elle est munie du cache haut-parleurs. Le volume total est de 55 litres. Elle ne pose pas de véritables problèmes de construction pour un bon bricoleur en menuiserie, petite mécanique et en câblage de circuits imprimés, comme c'est le cas, je pense, de la majorité des lecteurs de cette revue.

DÉFINITION TECHNIQUE

COLONNE

Le choix des H.P. est le suivant : grave-médiunm «8V4412» à membrane Polyglass, Tweeter «TC90Tdx» à dôme de titane, tous les deux de marque FOCAL. Le grave-médiunm à une réponse quasi plate de 70Hz à 5000 Hz et le tweeter de 1 à 15 kHz. Ils possèdent par ailleurs une efficacité dont la différence est inférieure à 2 dB. Les paramètres de Thiele annoncés au catalogue du constructeur sont :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>8V4412</th>
<th>TC90Tdx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fs</td>
<td>27.5Hz</td>
<td>850Hz</td>
</tr>
<tr>
<td>Qts</td>
<td>0.30</td>
<td>0.91</td>
</tr>
<tr>
<td>Vas</td>
<td>106L</td>
<td></td>
</tr>
</tbody>
</table>

Nous avons mesuré sur les 2 exemplaires du grave-médiunm utilisés pour réaliser nos prototypes, respectivement :

- pour Fs : 31.5 et 29.7 Hz, Vas : 71 et 82L et Qts : 0.39, paramètres qui sont un peu différents des valeurs du catalogue.
- Nous retenons pour les calculs de notre enceinte les valeurs moyennes de Fs = 30.6 et Vas = 75 L.

Les deux H.P. sont alignés temporellement, pour ce faire le plan de pose du tweeter est en arrière de 53 mm de celui du grave-médiunm. Cette côte correspond à la différence entre la mi-hauteur des bagues de champ des deux H.P.

Le Bass-Reflex est réglé, avec un volume Vab de 49L, pour obtenir en moyenne sur les deux prototypes, les paramètres suivants :

- Qt = 0,391
- A = Vas/Vab = 1,53
- H = Fb/Fs = F0/Fs = 0,91
- F0 = 29,2 Hz (Min de Zbr)
- F1 = 15 Hz (1ère Max de Zbr)
- F2 = 57 Hz (2ème Max de Zbr)
- F3 = 38,7 Hz (Fréquence de coupure à 3 dB).

Pour ce faire, l'évent aura une longueur de 18 cm et une surface de 31 cm². On prévoit une courbe de réponse sans «overshoot».

COFFRET (figure 1)

Le coffret présente les dimensions suivantes, hors cache H.P. : 95x26x32 cm. Il est conçu à l'aide d'aggloméré de type «médiunm», les parois latérales ont une épaisseur de 19 mm, les panneaux avant ou arrière de 22 mm. L'alignement temporel du tweeter et du grave-médiunm explique le décrochement de 53 mm situé sur la coupe «AA» du plan. Le volume brut est de 55 L.

On remarque que la structure est rigidifiée par 2 cloisons horizontales situées à égale distance du grave-médiunm et le plus près possible de celui-ci (coupes CC et DD). On voit que ces cloisons, du fait de leurs découpes en forme de croix permettent de réunir les 4 parois entre elles. En outre, elles partagent la hauteur.
de la colonne en tronçons de longueurs inégales. Toutes ces mesures sont prises dans le but de briser les modes de vibrations des parois en ondes stationnaires.

Le volume utile est de 49 L. La hauteur d'écoute de cette enceinte est de 75 cm (directivité à 40 cm ±15°). À une distance d'écoute de 3 m, l'écart angulaire par rapport à l'axe des 2 sources est d'environ 2°. Les H.P. ne sont pas encastrés dans le panneau avant afin d'en simplifier l'usinage. On remarque à la base
LA COLONNE OPUS 2VA

arrière de l’enceinte une découpe rectangulaire de 205 x 90 mm qui permet la mise en place des deux sous-ensembles du filtre actif. Les matériaux d’assimillement prévus sont les suivants :
- Mousse MONACOR alvéolée en forme de «casiers à œufs» de 60 mm d’épaisseur, celle-ci est collée sur une des parois latérales et sur la paroi opposée aux H.P.,
- Mousse MONACOR alvéolée de 20 mm d’épaisseur, celle-ci est collée sur l’autre paroi latérale. Le coffret est équipé des deux H.P. Focal. Le plan mécanique de la structure fait l’objet de la figure 1.

EVENTS
L’événement participant à la réponse de l’enceinte, nous avons préféré le disposer à l’avant afin que la position d’écoute par rapport aux murs du local ne soit pas critique. Des dispositions ont été prises pour amortir ses résonances et réduire les bruits d’écoulement de l’air :
- les modes de vibration d’un tuyau ouvert présentant un «ventre» à ses extrémités, l’entrée est coupée en biseau à 45°. Elle est orientée vers le haut, ce qui améliore le couplage avec le H.P.
- les 2 extrémités de l’événement sont obturées par une plaque fibreuse de 10 mm d’épaisseur et semi transparente de façon à introduire des pertes.

La surface de l’événement de 31 cm² est couverte par l’intermédiaire de deux tubes. Sa longueur moyenne est de 18 cm. Les événements sont tracés sous forme de traits en pointillés sur la coupe AA du plan proposé en figure 1.

Les matériaux utilisés pour la réalisation sont :
- le tube en polystyrène extrudé de diamètre extérieur 70 mm et 45 mm intérieur. C’est un matériau rigide inerte et excellent du point de vue isolement phonique,
- le Scotchbrite en feuille de 5 mm.

CACHE HAUT-PARLEURS
La mise en phase du tweeter et du grave-médium, que nous avons jugée nécessaire pour assurer plus de réalisme à la reproduction sonore, présente un inconvénient majeur du point de vue de l’esthétique de la colonne. Nous avons essayé de la rétablir par l’intermédiaire du cache haut-parleurs. Je pense que nous avons répondu à cet objectif en créant un cache angulé à 18° dans sa partie haute. Nous nous sommes efforcés de le rendre le plus transparent possible dans la région du tweeter sans nuire à sa rigidité. L’idéal aurait été un cadre moulé, mais ce n’était pas envisageable pour des raisons de coût dans le cas d’un prototype. Il est représenté sur le plan de la figure 2. On aperçoit le cache déposé sur une vue de profil de la planche photographique.

FILTRES ACTIFS
L’ensemble filtre actif comprend : un filtre 2 voies avec ses deux amplificateurs de puissance, une alimentation de puissance à mise en fonctionnement télécommandée en H.F. Il est représenté sur le schéma de la figure 3.

Le niveau E.A.F. maximum possible est de 2 Veff sur 50 Ω, la pleine puissance est obtenue pour 0.75 Veff. L’enceinte est alimentée sur le secteur 220 V/50-60 Hz. La liaison audio est réduite à un câble RCA mâle/mâle. La sortie S.H.P. doit être reliée au Tweeter, la sortie S.L.P. au grave-médium. Les 2 H.P. doivent être en phase.

FILTRE 2 VOIES
La fréquence de croisement Fo des filtres de voies est à optimiser en fonction de la bande passante des H.P. Le grave-médium possède une réponse qui s’étend jusqu’à 5 000 Hz avec un minimum d’accidents et d’effets dus à la directivité. En ce qui concerne le tweeter, sa réponse est très linéaire de 1 kHz à 20 kHz Nous avons retenu Fo = 2,7 kHz.

Le schéma de principe du filtre actif est représenté en figure 4 : réalisé à partir d’un triple A.Op, il est du type «universal». Il permet grâce à sa structure bouclée, à la fois les fonctions passe-bas, passe-haut, celles-ci étant parfaitement complémentaires. Il comporte un double intégrateur de constante de temps R3-C1 et R5-C2 bouclé par R4 sur l’entrée (-) du sommateur.

Une seconde boucle par R6-R7 sur l’entrée (+) permet de déterminer le coefficient de surtension du filtre. Les équations du circuit sont les suivantes :

\[\omega_0 = 2 \pi F_0 = \frac{R2}{(R4,R3,C1,R5,C2)}^{10}\]
\[Q = \frac{R1 + R6}{R7}K\text{ avec} \]
\[K = \frac{(R3,C1)}{(R5,C2,R2,R4)}^{10}\]
\[1/R = 1/R1 + 1/R2 + 1/R4\]
Les valeurs des composants utilisés sont :
R1 = R2 = R4 = 100 kΩ
R3 = R5 = 59 kΩ
C1 = C2 = 1 000 pF
R6 = 400 kΩ pour Q = 0.5 (Linkwitz-Riley)
R8 = 178 kΩ pour Q = 0.71 (Butterworth)
R7 = 200 kΩ
R9 = 5,1 kΩ (pour compenser un écart de 2 dB entre les 2 voies).

Le gain du filtre est de 1 et les sorties L.P. et H.P. sont en phase, chacune sera reliée à l’entrée d’un amplificateur de puissance. Le composant actif principal de ce filtre est un quadruple A.Op. TL074C câblé selon le schéma avec une dizaine de composants extérieurs à tolérance 1 % pour les résistances et 5 % pour les capacitès.
La résistance R8 constitue un atténuateur avec la résistance d’entrée de l’amplificateur, nous avons prévu un rhéostat de 10 kΩ qui permettra de régler l’atténuation entre 0 et 3 dB.
Les entrées ±35 V sont découpées chacune par un condensateur de 4 700 µF/40 V.
La micro-structure doit être alimentée en ±12 V, il convient donc d’ajouter des régulateurs de tension (µA78L12 & µA79L12). Le schéma électrique fait l’objet de la figure 5.

AMPLIFICATEUR DE PUISSANCE
Ils sont au nombre de 2 par filtre de voie. Son schéma est présenté sur le plan de la figure 6.
Il est réalisé à partir d’une micro-structure du type TDA7294 de SGS-THOMSON qui peut délivrer 60 W avec une distorsion < 0.01% sur une charge de 8 Ω et 70 W avec moins de 1 %. Le schéma proposé permet d’obtenir une bande passante de 5 à 20 kHz. Le gain de l’éta-
ge est déterminé par les résistances R2 et R3 :
G = 1 + R3/R2 = 33,3, soit +30,5 dB
R1 = R3 = 22 kΩ
R2 = R3/32,3 = 680 Ω

La bande passante pour les fréquences basses est déterminée par les constantes de temps R1.C1 et (R1 + R2).C2 de façon que R1.C1 = (R1 + R2).C2, dans ce cas la réponse est celle d’un filtre passehaut du 1er ordre, de fréquence de coupure :
Fc = 1/(2π R2.C2)

Avec les valeurs utilisées sur nos prototypes C1 = C2 = 10 μF et R1 = R3 =
22 kΩ, la fréquence de coupure est de
23 Hz. Les résistances R1, R2 et R3 sont
précises à ±1%. Les capacités C1 et C2 sont des électrochimiques bi-polaires à tolérance 10 % de chez MONACOR. Nous conseillons d’utiliser C1 = C2 = 47 μF, ce qui réduirait Fc à 5 Hz.

Pour notre application les fonctions MUTE et STDBY ne sont pas utilisées et pour ce faire, les entrées correspondantes sont reliées au +35 V.

ALIMENTATION DE PUSSANCE ET RELAIS DE TÉLÉCOMMANDE H.F.

Le schéma de cette alimentation est représenté à la figure 7. Elle est conçue pour respecter les spécifications générales SGS-THOMSON d’alimentation du TDA294. Elle se compose principalement d’un transformatore 220 V / 2x25 Vef de 300 VA, d’un pont de diodes D1 de 5 A et 600 V, de deux condensateurs électrochimiques de 10 000 μF/63 V. L’entrée secteur est commutée par un relais télécommandé en H.F. : MRT1 dont l’adresse est codée. C’est un module du commerce. Cette alimentation fournit 2x35 V sous 2,5 A. On remarquera que compte tenu des capacités situées sur les amplificateurs de puissance, le filtrage total est de 29400 μF sur chaque sortie.

FABRICATION

L’enceinte active OPUS 2VA se compose de plusieurs sous ensembles, une colonne qui est équipée de ses deux H.P. et d’un filtre actif 2 voies. Ils sont interconnectés suivant le schéma de la figure 8. Dans le cas où l’utilisateur ferait le choix de Q = 0.71, le branchement du tweeter devrait être inversé. Une télécommande H.F. permet la mise EN/HORS service de la paire d’enceintes.

COLONNE

LE Coffret

Nous avons fait découper les panneaux de «média» dans une grande surface de bricolage selon les dimensions suivantes (vérifier l’épaisseur des panneaux et la précision de la découpe à ±0.5 mm):

<table>
<thead>
<tr>
<th>Qté</th>
<th>Ep : 22 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face arrière (A)</td>
<td>1</td>
</tr>
<tr>
<td>Face avant inférieure (B)</td>
<td>1</td>
</tr>
<tr>
<td>Face avant supérieure (C)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qté</th>
<th>Ep : 19 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fond (D)</td>
<td>3</td>
</tr>
<tr>
<td>Dessus (D)</td>
<td>3</td>
</tr>
<tr>
<td>Milieu (D)</td>
<td>1</td>
</tr>
<tr>
<td>Dessus (E)</td>
<td>1</td>
</tr>
<tr>
<td>Côts (F)</td>
<td>2</td>
</tr>
</tbody>
</table>

Après avoir effectué toutes les découpes spécifiques, le perçage et le fraisage des trous de fixation, les panneaux sont assemblés par visage (vis TF 4x50 mm) et collage. L’assemblage s’effectuera en 4 étapes :

1) Panneaux latéraux, avant et arrière, entretoises : assemblage définitif, prévoir un léger débord des panneaux par rapport au fond et au toit (<0,2 mm). Ensuite : il faut coller les plaques de mousse d’amortissement, fixer le support d’évent en dessous de l’entretoise située à la base du grave-médium. En final, il faut fixer le panneau avant.

2) Pose des évents, celle-ci est un peu délicate : il faut utiliser de la colle néoprène et faire un double encollage. Enduire préalablement toutes les surfaces en contact: les évents, les trous du panneau avant et le support.

Après positionnement des évents sur le panneau avant (extrémité à 45° orientée vers le H.P), presser ceux-ci sur le support en passant les mains par le trou du H.P.

3) Ponçage des champs de l’ensemble pour égaliser les débords gênants. La qualité générale du ponçage dépend du type de finition désiree : moyenne en cas de placage, très fine après un enduit des tranches en cas de laquage (pour éviter toute entrée de poussières dans l’enceinte, obturer toutes ses ouvertures avec une feuille de papier fixée par un ruban adhésif).
4) Finition au choix par :
- Placage de l’ensemble à partir de feuilles pré-encollées au fer à repasser (température maximum), vérifier l’absence de poches d’air et araser les tranches au cutter.
- Après ponçage avec du papier à grain fin, on peut appliquer une cire teintante ou un vernis selon l’essence du bois et le produit utilisés.
- Laquage suivant la peinture utilisée au pinceau ou au pistolet, un second ponçage suivi d’une autre couche de peinture peuvent être nécessaires.

Comme vous pourrez le constater, notre prototype est plaqué et ciré, mais le panneau avant est peint en noir satiné, compte tenu que nous ne désirons pas utiliser les enceintes sans cache.

LES EVENTS
On procédera de la façon suivante :
- Découper, dans un tube de 1 m, une longueur de 37 cm et ensuite réaliser deux tronçons complémentaires de longueur égale selon un angle de 45°.
- Découper dans une feuille de "Scotchbrite" huit rondelles de 70 mm de diamètre, coller à chaque extrémité des tubes deux rondelles de Scotchbrite.

LE CACHE HAUT-PARLEURS
Cette pièce est très délicate à réaliser. Il est important de bien examiner le plan d’ensemble avant d’en débuter la construction (voir figure 2). Elle est constituée principalement d’un cadre assemblé à partir de moulures en « ayous 1/4 rond » de 20 mm de côtes. Le cadre de hauteur totale de 95 cm présente un angle de 18° à 16 cm du sommet. La réalisation nécessite une grande précision pour la découpe des différents tronçons du cadre (scie à angle de coupe réglable). L’utilisation d’une colle rapide est préconisée. D’une façon générale, l’assemblage des différentes pièces est effectué par encollage et agrafage des parties en contact. C’est un travail d’encadreur, si l’on est très précis en ce qui concerne les découpes et patient en ce qui concerne les séchages, on obtiendra en final un cache solide et rigide. Nous conseillons de fabriquer le cadre en trois étapes principales :

- La partie basse de 790x260 mm :
donc les tronçons sont agrafés dans les angles, les deux planchettes de largeur 220 mm y sont encastrées et agrafées à plat sur le pourtour. Elles sont situées de chaque côté du grave-médium et pré-découpées en fonction de son contour.

- La partie haute de 160x260 mm :
les 2 tronçons de 160 mm sont coupés selon un angle de 72° d’un côté et à 45° de l’autre (mais dans des plans per-
LA COLONNE OPUS 2VA

Figure 10

Figure 11a (face composants)

Figure 11b (face cuivrée)

pendiculaires), les 2 tronçons de dimensions 20x20x48 mm sont coupés d’un côté à 18° et assemblés par une planchette de 53x220 mm. Une autre planchette de 160x260 mm renforce cette partie du cadre, elle est découpée selon le contour du tweeter et elle est biseauté à 15 mm du bord haut sur 5 mm d’épaisseur et sur 260 mm de longueur.

L’assemblage de ces deux parties après séchage de chacune d’elles: il faut agrafaer les deux planchettes perpendiculaires à leurs extrémités ainsi que les bords intérieurs des mouures des deux cadres afin de les immobiliser pendant séchage.

Le cadre est garni de ruban Scotch double face sur une longueur de 5 cm sur les angles arrondis et toute la périphérie à l’envers.
Nous conseillons de débuter l’entoilage du cadre par le bas en centrant le tissu sur l’arrière par une agrafe et ensuite de le tendre pour le centrer en haut. On veillera ensuite à ce qu’il soit tendu de façon homogène sur chacun des côtés. Il se moule parfaitement sur les arrondis, dans les angles à l’avant sans aucune coupe. Ensuite sur le pourtour arrière du cadre, il est agrafé et coupé dans les angles.

FILTRE ACTIF

Le filtre actif constitue un ensemble mécanique qui comprend deux sous-ensembles: le filtre 2 voies et ses amplificateurs de puissance, l’alimentation ±35 V télécommandée, qui peuvent être logés facilement dans l’enceinte.

FILTRE DEUX VOIES ET AMPLIFICATEURS

Le sous-ensemble s’insère dans la fenêtre de 205 x 90 mm située à la base de la face arrière de l’enceinte. Il est fixé sur le coffret par l’intermédiaire de 8 vis TC de 3x15 mm et d’un joint d’étanchéité de 1 mm en matière plastique.
Il se compose de trois pièces:
- un «radiateur (A) en forme de peigne» de dimensions 250x70x40 mm.
- une «platine supérieure» (B) en forme d’équerre de dimensions 250x40x10 mm fixée par 3 vis sur le radiateur,
- une «platine inférieure» (C) également en forme d’équerre de 210x40x10 mm.

Le tout est assemblé par deux équerres moulées (D) de 80x70 mm et de 6 vis TF à tôle de 3x20 mm.
La «platine supérieure» supporte la fiche secteur, un fusible, un interrupteur M/A, une Led, une fiche RCA femelle (entrée audio). Le circuit imprimé du «filtre 2 voies» est fixé, à cheval sur celle-ci et le radiateur, par l’intermédiaire de 4 entre-

L’ensemble devra être présenté sur l’enceinte et les trous correspondants aux inserts de fixation seront contrepercés à 3mm et ensuite sur le cache et l’enceinte aux valeurs définitives (inserts mâles sur le cache et femelles sur l’enceinte). Il faut maintenant procéder à l’entoilage du cache qui devra être préalablement peint en noir. Le tissus adapté à cet usage est un «Jersey» qui est généralement disponible en 55 cm de large, généralement de couleur noire, ardoise ou marron. Le tissus doit être pré-découpé suivant un patron (voir plan) qui représente la surface développée du cadre avec des dimensions réduites de 30 à 40 % pour en assurer la bonne tension.
Le plan mécanique de ce sous-ensemble est présenté en figure 9.

Le "Filtre 2 voies" est réalisé sur un circuit imprimé de 41 x 75 mm où sont implantés les différents composants nécessaires : TL074C, 78L12, 79L12 ainsi que les résistances et les capacités. Une barrette de 12 broches en ligne située à la partie supérieure droite permet de raccorder le filtre aux amplificateurs de puissance. Le plan de câblage de ce filtre fait l'objet de la figure 10 et le circuit imprimé est proposé en figure 11. C'est un circuit double face.

Chaque "Amplificateur de puissance" est implanté sur un circuit imprimé de 45x88 mm. Le TDA7294 est soudé verticalement sur le circuit imprimé de façon à en permettre la fixation à plat sur le radiateur par une vis TC de 3x10 mm, à travers un film et un canon isolant. La continuité électrique entre les plans de masse des circuits imprimés et la structure mécanique est assurée par les entroises. Le plan de câblage est représenté en figure 12 et son circuit imprimé en figure 13. Nos prototypes sont équipés de capacités C1 et C2 de 10 μF à sorties axiales. Mais l'implantation sur circuit imprimé permet de monter des capacités de 47 μF. Le circuit imprimé est un circuit simple face.

Certaines précautions de câblage particulièrement seront prises :
- on prendra le soin de couper, avant soudure, la patte "11" du TDA7294,
- R5 et D1 ne seront pas câblés,
- le câble sera de valeur 47kΩ et son extrémité connectée par un strap filaire au +35 V du côté composants,
- l'entrée STB sera connectée au +35 V par un strap filaire du côté composants,
- les fils de connexions aux borniers de sortie (J1, J4 et J5 du filtre actif) seront soudués directement sur le circuit imprimé, c'est-à-dire : pour l'entrée EAP en blindé, pour les alimentations ±35 V, la masse et les sorties H.P. en câble souple de section 1.5 mm². Le plan fourni en
figure 14 définit l'interconnexion entre les circuits imprimés, la fiche RCA J1 et les barrettes de dominos J2 à J5.

ALIMENTATION TÉLÉCOMMANDÉE

Les composants sont assemblés sur une platine de 20x15 cm qui se fixe par 4 vis TF à tôle de 4x30 mm (têtes à l'extérieur) sur le fond de l'enceinte. L'alimentation est raccordée au sous-ensemble "filtre 2 voies et amplificateurs" par l'intermédiaire d'une barrette électrique (dominos). Le transformateur torique est fixé sur la platine par l'intermédiaire d'un boulon de 6x60 mm et d'une couppelle de centrage. Les électrochemiques de filtrage sont fixés par des colliers.

Le pont de diodes est fixé à plat par un boulon de 5x20 mm.

Le relais H.F. télécommandé est un composant du commerce, conçu pour se brancher sur une prise secteur, mais nous l'avons démonté sans peine pour en extraire le circuit imprimé. Celui-ci a été ensuite inséré dans un petit boîtier plastique de protection et fixé sur la platine alimentation. Tous les composants sont raccordés entre eux et à la barrette électrique par des câbles de section 2,5 mm². Ces câbles constituent un toron frétré.

Le plan mécanique de ce sous-ensemble est présenté en figure 15.

BOÎTIER DE TÉLÉCOMMANDE

C'est un composant du commerce que l'on trouve dans les grandes surfaces du bricolage (Castorama, Bricologis,...) qui se présente sous la forme d'un petit boîtier noir de dimensions 45x120x20 mm. Un couvercle glisse et permet d'accéder aux boutons M/A des 4 canaux codés possibles, ce qui permet la division des sous-ensembles de la chaîne Hi-Fi, par exemple :

- Canal 1 : Préamplificateur & lecteur de CD
- Canal 2 : Enceintes D et G,
- Canal 3 : Lecteur de K7,
- Canal 4 : Platine vinyls

MESURES

Les mesures sont publiées pour préciser les performances de l'enceinte mais elles nécessitent de disposer d'une configuration informatique Multimédia, d'un shareware «AFA» et d'un adaptateur simple avec la carte Soundblaster. Si des réalisateurs sont intéressés, nous fournirons, par l'intermédiaire de cette revue, toutes les informations nécessaires pour la mise en place de la configuration. Celle-ci permet de réaliser toutes les mesures intermédiaires que nous avons menées au cours de la mise au point de cette enceinte, mais dont la description nous semblait inutile dans le cadre de ce document.

MESURES ÉLECTRIQUES

Elles ont fait l'objet principalement de contrôles sur les F2V_2700, SE_F2VAP et AL35V_200 W :

- de contrôles simples de continuité et d'isolement entre connexions qu'il faut effectuer avant toute mise sous tension (tout particulièrement on vérifiera ceux de l'embase du TDA7294H reliée au -35 V et du +35 V par rapport à la masse).

- de mesures des tensions d'alimentation internes et externes des trois circuits imprimés ainsi que de l'alimentation ±35 V (à vide ±39 V et en charge pour 2x60 W : ±±33 V). Si l'on dispose d'un oscilloscope, on vérifiera à la fois que l'ondulation à 100 Hz à vide et le bruit H.F. sont inférieurs à 10 mV crête à crête,

- de la puissance de sortie des amplificateurs à 200 Hz pour la voie «basse» et à 10 kHz pour la voie «haute», soit 75 W sur charge ohmique de 8 Ω, de la réponse aux signaux carrés aux mêmes fréquences que ci-dessus.

Celles-ci sont optionnelles car elles
nécessitent de disposer d’un générateur de fonctions et d’un oscilloscope.

Attention : toute mesure à une puissance supérieure à 10 Weff, sur l’enceinte équipée de ses HP est susceptible de détruire le tweeter.

PARAMÈTRES DU BASS-REFLEX
Les mesures sont réalisées sans amortissement intense. Les courbes relevées sur les deux H.P. étant pratiquement identiques nous n’en présentons qu’une seule.

On situe F2 à 53 Hz, F0 à 29 Hz et F1 à 17 Hz. L’impédance est plus élevée à F1 (65 Ω) qu’à F2 (58 Ω). Nous remarquons également plus particulièrement sur la courbe de phase de légères résonances vers 170, 250 et 370 Hz vraisemblablement dues aux ondes stationnaires du coffret. Les valeurs de F0, F1 et F2 sont cohérentes avec celles calculées au moment de l’étude du Bass-Reflex. Les résonances par ondes stationnaires sont atténuées après la pose des plaques de mousse alvéolée.

PARAMÈTRES DES FILTRES DE VOIES
Les courbes présentées sont tracées sur le même graphique, avec un gain de 1 pour la voie haute.

Bande passante du filtre de voies
La courbe de réponse englobe celle des amplificateurs de puissance. Chacun des deux est chargé par son H.P. afin de vérifier leur insensibilité vis à vis des variations de l’impédance de la charge. Cette courbe est relevée à un niveau d’entrée de 50 mVeff (-52.5 dB). Le niveau de sortie est de -22 dB pour les deux voies soit un gain de 30.5 dB. Les deux courbes se croisent à 2700 Hz vers -27 dB, ce qui réveillerait une surtension du filtre légèrement supérieure à 0.5. L’atténuation est de -3 dB à 20 Hz. Ces résultats sont conformes aux calculs.
LA COLONNE OPUS 2VA

Réponse globale
Pour cette mesure, l'idéal aurait été de placer le microphone à une distance d'au moins 3 m. Mais nous ne disposons pas d'une «chambre sourde» et la courbe relevée serait inexacte à cause des échos réfléchis par l'environnement. En conséquence le microphone est situé à 40 cm du panneau avant et à une hauteur de 75 cm, les échos parasites sont négligeables mais la directivité vis à vis des deux H.P. est de 15°. La courbe de réponse présente encore des irrégularités mais celles-ci sont d'amplitude plus faible (~6 dB) et cette courbe peut être interprétée. Si l'on situe le niveau moyen à +1.5 dB, la bande passante à ±3 dB s'étend de 40 Hz à 15 kHz. La chaleur de niveau au delà de 15 kHz peut s'expliquer par la directivité du tweeter.
Nous considérerons que ces résultats sont cohérents avec l'étude.

COMMENTAIRES SUR L'ÉCOUTE
Les observations relatives à l'écoute d'une paire d'enceintes actives sont résumées ci-après. L'écoute de l'ensemble Hi-Fi conforte les résultats de mesures enregistrés. Nous utilisons un préamplificateur, sans aucune compen-

- une excellente restitution de la
dynamique à l'écoute d'un grand
orchestre, sans sensation de malaise
(saturation dans les fortissimo, musique
étriquée dans les pianissimo).

La chaîne d'écoute est la suivante :
- Lecteur de Compact Disc
MARANTZ CD-52 mk II,
- Amplificateur DENON PMA-
1080R (2 x 120 Weff) avec en aval un
adaptateur de niveau et d'impédance
réalisé par nos soins.
Les résultats énoncés ont été constatés à
l'aide d'enregistrements réunis du label
«DDD», dont il serait fastidieux d'en citer
la liste, mais aussi d'extraits compilés
sur des CD destinés aux essais des
chaînes Hi-Fi, et plus particulièrement
ceux édités par la Nouvelle Revue du
Son et 50 Millions de Consommateurs :
- N.R.D.S. n°7, plages 10 «J. Guillou
aux Grandes Orgues de St Eustache,»
- N.R.D.S. n°10, pages 4 :
J.D.Encina «Solo de batterie», 8 :
Sarpelui «Flute de Pan & Orgue», 12 à
14 : «Applaudissements», 17 à 21 :
«Percussions»,
- 50 M.C., plages 1 : Cherubini
«Marche Funèbre»., 4 : Moussorgsky
Orgue J.Guillou «Promenade & Gnomus».
Nous avons testé tous les genres de
musique sur cette enceinte : classique ou
jazz, grands orchestres et petites forma-
tions, solistes, groupes de chanteurs à
«capella».
L'écoute de ces œuvres, après un choix
du niveau de départ qui nécessite la
connaissance de chacune d'elles, a tou-
jours été perçue avec plaisir, émotion
et surtout sans fatigue. Il est vrai que nous
avons choisi des enregistrements de
grande qualité et d'interprètes talentueux.
Ces choix étaient volontaires de
manièr à mettre en défaut les enceintes
et nous sommes parfaitement satisfaits
de leurs performances à l'écoute.

C. Schneider
Voilà de quoi satisfaire un bon nombre d'instrumentistes que cette réalisation qui permet de recevoir cinq signaux de provenances diverses, telles que guitares, microphones, claviers ou autres sources de modulation. Peu onéreux et sans aucune mise au point, cet Amplificateur/Mélangeur intéressera, nous le pensons, quantité de jeunes musiciens désireux de se réunir pour exprimer leur talent.

Nous vous proposons donc de réaliser un appareil compact renfermant une électronique de qualité, très fiable et pourtant non ruineuse. Les entrées, limitées au nombre de cinq pour le prototype, peuvent néanmoins s'étendre à 6,8 ou 10, nous en reparlerons lorsque nous aborderons le schéma de principe du mélangeur.

Le bloc de puissance fournit allègrement quelques 40 W eff avec une charge de 8 Ω et environ 50 Weff sur 4 Ω. Son dissipateur très largement surdimensionné, le met à l'abri des pannes d'origine thermique, ce qui est indispensable pour un appareil de sonorisation.

LE SYNOPTIQUE

L'Amplificateur/Mélangeur se décompose en quatre sous-ensembles :
- Le préamplificateur bas niveaux à 5 entrées
- Le mélangeur/correcteur de tonalité.
- L'alimentation filtrée ±28 V et stabilisée +22 V.
- Le bloc de puissance.

Nous retrouvons ces quatre étages reproduits en figure 1. Chacune des cinq entrées possède son propre réglage de volume, chaque musicien peut donc doser à volonté l'amplitude du signal fourni par son instrument.

Le correcteur de tonalité Grave/Aigus est, lui par contre, unique. Un volume général permet de doser l'amplitude de la modulation appliquée à l'entrée du bloc de puissance de type « intégré » puisque faisant appel au TDA 1514 A. Simplement filtrée et symétrique (+28 V) pour l'étage amplificateur, l'alimentation est régulée pour le module mélangeur qui nécessite une tension de +22 V pour un fonctionnement optimum. On peut raccorder une charge de 4 ou 8 Ω en sortie de l'Amplificateur.

L'enceinte acoustique (a deux ou trois voies) sera de préférence à haut rendement, de l'ordre de 100 dB et équipée d'un boomer d'au moins 31 cm de dia-
mètre si l'on veut pouvoir reproduire correctement les basses fréquences sans atténuation.

LE PRÉAMPLI BAS NIVEAU

- SON SCHÉMA

Il vous est communiqué en figure 2. Nous voyons qu'il est fait usage de circuits intégrés individuels. La raison est en simple. Utiliser un quadruple ampli opérateur c'est risquer, en cas de défaillance de celui-ci, (et l'électronique n'est pas immortelle !) de se retrouver avec une seule entrée, ce qui pour un groupe de 4 à 5 musiciens est catastrophique.

Une deuxième raison, c'est de pouvoir plus facilement permettre les circuits intégrés pour sélectionner l'A.Op au «top niveau» au moment de la réalisation, pour son «SON», son faible bruit, sa bande passante... (les A.Op simples sont beaucoup plus nombreux que les quadruples).

Les entrées de la modulation se font par l'intermédiaire de Jack ø6,35 mm, et ce sur les entrées non-inverseuses des circuits intégrés.

Chaque entrée est chargée par une résistance que nous avons sélectionnée à une valeur nominale de 47 kΩ.

Le gain en tension de chaque étage est déterminé par la valeur de la résistance de contre-réaction ainsi que par celle chargeant l'entrée inverseuse, en se basant sur la relation : $G_v = 1 + (R_3/R_2)$, cas de l'ampli Op IC1.

En choisissant $R_1=R_3 = 47 \, \text{kΩ}$ et $R_2 = 4,7 \, \text{kΩ}$, nous sélectionnons un gain en tension de 11.

On peut ainsi, sur chacune des 5 entrées, adapter l'impédance à la source et modifier le gain en tension selon les besoins pour la sonorisation.

Les circuits intégrés sont alimentés en ±15 V à partir de deux régulateurs, les entrées de ceux-ci étant reliées à l'alimentation générale ±28 V.

La modulation amplifiée se retrouve sur les pattes (6) des amplis Op pour
Les circuits intégrés sont enfichés sur des supports DIP8 afin de pouvoir tester aisément plusieurs références. Sur notre maquette, nous avons emboché des OPA-604AP.

Ce circuit résulte de recherches approfondies menées par BURR-BROWN sur le comportement « auditif » des amplis Op spécialisés.

Le traitement du signal est entièrement assuré par des transistors FET, dont la sonorité se rapproche le plus du son des « tubes ».

Bien évidemment vous pourrez mettre en lieu et place sur votre module, sans aucune modification, des NE5534, LF351, 741, 301AN... Les résultats obtenus sont directement liés au prix du composant !

Ce module reçoit également les deux régulateurs en boîtier T092. On y applique donc directement la tension ±U prélevée sur le module alimentation.

De nombreux condensateurs de découplage (C) ont été implantés afin d’optimiser les performances de ce module préamplificateur (bruit, stabilité...).

N’oubliez pas de mettre en place les 5 straps qui ont écarté l’étude d’un circuit imprimé double face.

La modulation injectée aux prises Jack ø6,35 mm est disponible, amplifiée, aux picots S1 à S5.

SON SCHÉMA

Le schéma de principe est reproduit en figure 5. Il est transistorisé et utilise des NPN « faible bruit » du genre BC413 ou autres équivalents (BC550C...). Dès l’entrée, un potentiomètre de 100 kΩ dose l’amplitude de chacune des cinq modulations pouvant être appliquées de E1 à E5. La sensibilité y est de l’ordre de 100 mVeff. Il s’agit donc d’entrées « haut-niveau ».

Des condensateurs de 220 nF (C1 à C5) servent de liaison entre les curseurs des potentiomètres et les bases des transistors.
Toute éventuelle composante continue qui traînerait est ainsi bloquée. Chaque base de T1 à T5 est chargée par une résistance de 1 kΩ, (R6 à R10) tandis que l'émetteur se voit relié à la masse au travers d'une 3,3 kΩ (R11 à R15). Les bases de T1 à T5 sont également polarisées par des résistances de 120 kΩ (R1 à R5) à partir du pont résistif R16/R17.

Les collecteurs de T1 à T5 sont bien évidemment reliés entre eux et mèlènent ainsi les signaux des cinq entrées E1 à E5.

Nous observons une liaison directe entre ces collecteurs et la base de l'étage suivant T6 monté en collecteur commun. La résistance de charge commune R18 de T1 à T5 polarise donc également la base de T6.

Une petite précision complémentaire concernant cette résistance R18 : Au début de cet article, nous avons dit que le nombre des entrées, porté ici à cinq pour notre maquette, pouvait être augmenté. Il faut savoir à ce stade, que plus les entrées sont nombreuses et plus la résistance R18 doit être faible. Elle se détermine par le rapport 30 kΩ/n entrées, soit 6 kΩ pour cinq entrées (6,2 kΩ valeur normalisée), 5 kΩ pour six entrées (5,1 kΩ valeur normalisée)... Les signaux ayant traversé le sommateur se retrouvent mélangés aux bornes de la résistance d'émetteur de T6 pour y être prélèvés par le condensateur de liaison C8. Ce transistor T6 sert d'étage « tampon » pour y raccorder le correcteur de tonalité actif à contre-réaction négative dérivé du Baxandall.

Le potentiomètre P6 permet de doser l'efficacité des basses fréquences (renforcement ou au contraire, atténuation du grave). Le potentiomètre P7 n'agit lui, que sur le relevé ou l'affaiblissement des aigus. La contre-réaction est prélèvée sur l'émetteur de T8 au point commun de R29 et R30.

Le signal plus ou moins corrigé par P6 et P7 est ensuite préllevé par C13 pour être
NOMENCLATURE DES COMPOSANTS

MODULE MÉLANGEUR

- Résistances ±5 % 1/2 W
 - R1, R2, R3, R4, R5 - 120 kΩ
 - R6, R7, R8, R9, R10 - 1 kΩ
 - R11, R12, R13, R14, R15 - 3,3 kΩ
 - R16 - 22 kΩ
 - R17 - 2,7 kΩ
 - R18 - 6,2 kΩ
 - R19 - 5,6 kΩ
 - R20 - 330 Ω
 - R21 - 390 Ω
 - R22 - 8,2 kΩ
 - R23 - 33 kΩ
 - R24 - 8,2 kΩ
 - R25 - 1,5 MΩ
 - R26 - 180 kΩ
 - R27 - 100 kΩ
 - R28 - 18 kΩ
 - R29 - 8,8 kΩ
 - R30 - 1,5 kΩ
 - R31 - 1 kΩ

- Potentiomètres pour C.I.
 - P1 à P8 - 100 kΩ lin.

- Condensateurs non polarisés
 - C1, C2, C3, C4, C5 - 220 nF
 - C9 - 2,2 nF
 - C10 - 22 nF
 - C11 - 22 nF
 - C12 - 2,2 nF
 - C16 - 1 μF

- Condensateurs polarisés
 - C6 - 2 200 μF / 25 V
 - C7 - 220 μF / 10 V
 - C8 - 47 μF / 25 V
 - C13 - 1 μF / 25 V (ou non polarisé)
 - C14 - 47 μF / 25 V
 - C15 - 47 μF / 25 V

- Semiconducteurs
 - T1 à T8 - BC 413 ou BC 550 C...
appliqué à la base du transistor amplificateur T7.
Monté en émetteur commun, T7 a un coefficient d’amplification en tension important au regard de sa charge de collecteur élevée R27/100 kΩ.
Ce gain est déterminé par le rapport des résistances R27/R28, soit donc environ 5,5. Cette amplification compense l’atténuation que le signal vient de subir en traversant le correcteur de tonalité.
Une liaison directe est établie entre T7 et le dernier transistor du mélangeur. R27 sert donc également à la polarisation de la base de T8.
T8 est monté comme T6 en collecteur commun, collecteur directement relié au (+) de l’alimentation. C’est donc sur son émetteur que le condensateur de liaison C16 préleve le signal avant de l’appliquer à travers R31 aux bornes du potentiomètre de volume général P8.
La section « mélangeur » à proprement parler est alimentée à partir de l’alimentation stabilisée +22 V à travers une cellule de filtre composée de R20 et C6. Cet étage est ainsi isolé de celui de sortie composé du tandem T7/T8.

SON CIRCUIT IMPRIMÉ
Il est proposé à l’échelle 1 en figure 6. Il s’agit d’une implantation simple à reproduire si vous aimez graver vous-même vos C.I., sinon le service « Circuits imprimés » de Led est à votre disposition. Les dimensions de la plaquette pour un mélangeur à 5 entrées comme le nôtre sont de 224 x 48 mm.
On remarque à droite de cette implantation, le côté répétitif du dessin où aux entrées identiques et aussi la facilité d’en augmenter le nombre, en allongeant la carte.
Nous avons prévu des pastilles d’un plus gros diamètre aux emplacements des potentiomètres qui viennent ainsi se souder directement à la plaquette d’époxy.

SON PLAN DE CÂBLAGE
Le schéma de la figure 7 doit vous permettre de mener à bien le câblage de ce deuxième module. Rien de bien compliqué dans ce travail de pose et du souduage des composants. Attention à l’orientation des électrochimiques et des transistors. Les huit potentiomètres se soudent directement au C.I. Pas de fils d’interconnexions, ils sont dotés chacun de cinq pattes directement soudables aux pastilles.
Veiller toutefois à ce que les axes soient bien tous dans le même alignement. Au besoin, retoucher les deux pattes avant de maintien, pour les repositionner. Les axes de ces potentiomètres doivent être coupés à la scie à métaux en ne laissant subsister qu’une longueur de 8 à 10 mm au-dessus des canons.
Tous les composants étant repérés par leurs symboles sur cette figure 7 pour plus de clarté, il suffit de se reporter à la nomenclature pour connaître la valeur nominale ainsi que la tolérance de chacun d’eux.
Au niveau des entrées E1 à E5, souder des fils (ou des picots) de longueur 8 à 10 cm.
Ces cinq fils iront s’interconnecter aux picots S1 à S5 du précédent module. D’une longueur de 20 cm environ, deux fils sont soudés aux pastilles (+22 V) et (0 V). Reste pour terminer les pastilles réservées au signal de sortie et repérées (S). Pour plus de commodité lors des interconnexions avec le bloc de puissance, prévoir deux picots à souder.
Une dernière vérification du travail accompli avant de passer à la dissolution de la résine de la soudure au trichloréthylène puis au vernissage du C.I. à la bombe.
Le Mélangeur/Correcteur est prêt à entrer en action. Aucun réglage n’est nécessaire.

LE BLOC DE PUISSANCE

SON SCHÉMA
Pour ses hautes performances et sa simplicité d’emploi nous avons utilisé le circuit intégré TDA 1514A, ce qu’indique la figure 8. Cet intégré est un amplificateur de puissance aux normes Hi-Fi que l’on rencontre dans les appareils de radio, de télévision haute définition...
Ce circuit est intégralement protégé, les deux transistors de sortie ayant une protection thermique et une protection contre les court-circuits. En sonorisation, c'est appréciable et recommandé. Il possède également une fonction « Muting ». A la mise sous tension, l'enceinte reste muette quelques secondes, aucun signal n'étant appliqué à la charge.

Il possède également une protection contre les décharges électrostatiques. Encapsulé dans un boîtier SOT 131 AQ à neuf broches, voici quelques caractéristiques du TDA 1514 A.

- Tension d'alimentation : ±10 V à ±30 V
- Courant de repos (±27,5 V) : 60 mA
- Puissance de sortie (±27,5 V / RL = 8 Ω) : 40 W
(±23 V / RL = 4 Ω) : 50 W
- Rapport signal/bruit (Po = 50 mV) : 82 dB
- Bande passante (-3 dB) : 20 à 25 kHz
- Slew Rate : 10 V / μs
- Impédance d'entrée : 1 MΩ
- Impédance de sortie : 0,1 Ω

Quelques composants R.C. regroupés autour du TDA 1514 A permettent d'en tirer une puissance largement suffisante pour nos besoins.

La modulation est appliquée à la broche 1 par l'électrochimique C1 qui bloque à l'entrée toute tension continue indésirable à la bonne sécurité du TDA 1514 A. La résistance R1 charge l'entrée et porte l'impédance Zin à 20 kΩ.

Le gain en tension en boucle fermée est déterminé par le rapport de R3/R2, soit 20 000/680 # 30. Il peut varier entre 20 et 46 dB.

La résistance R4 détermine la constante de temps du « Muting ».

Aux bornes de la charge, se retrouve le traditionnel circuit bouchon R.C. composé ici d'une 3,3 Ω et d'un 22 nF. Les composants R5-R6 et C4 constituent un bootstrap. Sans leur présence et en portant la broche (7) à l'alimentation positive +U, la puissance de sortie ne serait que de 4 W approximativement.

C6, C7 et C8 sont des condensateurs de découplage de l'alimentation symétrique ±U.

SON CIRCUIT IMPRIMÉ

Miniaturisé à l'extrême et implanté avec beaucoup de soins afin d'éviter tout risque d'instabilité, le dessin des pistes cuivrées est proposé en figure 9. Une petite plaquette de 43 x 33 mm regroupe tous les composants. Des pastilles d'un plus gros diamètre sont prévues pour les interconnexions : (+), (−), (HP), (E).

SON CÂBLAGE

Vu les faibles dimensions du C.I. et la grosseur de certains condensateurs, les éléments C6, C7 et IC1 se soudent côté pistes cuivrées, ce qu'indique la figure 10b.

On commence bien entendu le câblage en s'aidant de la figure 10a et de la nomenclature.

Tout d'abord, par les résistances, puis les condensateurs (attention aux polarités), les fils d'interconnexions d'une longueur de 30 cm environ, le circuit intégré IC1 (lui côté pistes) en coutant ses neuf broches à 90° et en le surélevant du C.I. au moyen de deux entretoises nylons de 5 mm et enfin les condensateurs C6 et C7. Eux également ont leurs pattes pliées à 90°.

Il ne reste plus de libre que les deux pastilles de l'entrée modulation (E). On y raccorde un câble blindé de 30 cm de longueur.

C'est terminé pour ce module, mis à part le coup de pinceau imbibé de perchoro et la bombe de vernis.

Le module est ensuite fixé à un dissipateur CO 1161 P de 150 mm de longueur. Son profilé vous est montré en figure 11. Sa résistance thermique est de 0,5°C/W.

Le TDA 1514 A sera énergiquement refroidi et fournira sa puissance de 50 W sans broncher. Il n'y aura pas lieu de craindre une disjonction thermique. Sur ce dissipateur, sont également directement vissées les deux fiches bananes HP, au plus près du module.

Attention

La semelle métallique ne peut être vissée directement au dissipateur, car la broche (4) sur laquelle est appliquée la tension négative -U est reliée à cette semelle. On mesure en effet entre les deux points une résistance de 123 Ω.

Il faut donc intercaler un isolant.

Nous avons adopté la solution de deux isolants pour boîtier TOP3 côte à côte. Les deux trous de fixation tombent au même écartement que celui du TDA1514, ce qui est parfait. La visserie n'a pas besoin d'être isolée par un canon, car la tige filetée n'entre pas en contact avec la semelle métallique (vérifier tout de même à l'ohmmètre après fixation au dissipateur.

Le bloc de puissance est terminé. Raccordé à une alimentation symétrique de ±28 V, il est prêt à «cracher» sa puissance dans l'enceinte.

L'ALIMENTATION SYMÉTRIQUE ±U ET LA RÉGULATION +22 V

SON SCHÉMA

Celle-ci est construite comme l'indique la figure 12 à partir d'un transformateur de 160 VA délivrant au secondaire deux tensions alternatives de 21 V. Un interrupteur unipolaire permet d'appliquer le 220 V au primaire.

Après redressement par un pont moulé PR1 et filtrage par les électrochimiques C1 et C3, on obtient deux tensions conti-
nues symétriques ±U par rapport au point milieu du transformateur TR1.
Aux bornes des électrochimiques, on peut souder des condensateurs non polarisés C2 et C4 qui améliorent le filtre aux hautes fréquences, mais ils ne sont pas indispensables.
Deux fusibles F1 et F2 protègent les blocs de puissance TDA 1514 A bien que ceux-ci, comme nous l’avons vu lors de leur étude théorique, sont déjà bien protégés internièrement.
Une diode Led placée entre le +28 V et la masse témoigne de la mise sous tension de l’appareil. Elle est protégée par la résistance R2.
Après redressement et filtrage des secondaires, on peut s’attendre à obtenir des potentiels continus de ±30 V à vide.
Un régulateur IC1 associé à quelques composants permet de disposer d’une tension continue stabilisée de +22 V réservée au module mélangeur et au module déphaseur. L’ajustable multitours RV1 permet le réglage de cette tension.

SON CIRCUIT IMPRIMÉ
Une implantation est proposée en figure 13. Là encore, aucune complexité dans la gravure de cette plaquette si vous êtes moyennement équipé.
Les dimensions du C.I. sont de 91 x 62 mm. Sur cette surface de 56 cm² sont regroupés tous les composants, y compris les deux électrochimiques CO 39 directement vissés à la plaquette d’époxy sans leurs brides.

SON CÂBLAGE
Il n’y a pas grand chose à en dire, sinon de bien orienter la semelle de refroidissement du régulateur en boîtier TO 220. La figure 14 en montre le positionnement. Les condensateurs C2 et C4 sont sous-côté pistes si vous les prévoyez, à des cosses prises en sandwich entre les vis de blocage des électrochimiques et le verre époxy.
Côté composants, insérer une crosse entre le verre époxy et le canon (-) du

NOMENCLATURE DES COMPOSANTS

MODULE ALIMENTATION
- Int.1 - interrupteur unipolaire
- TR1 - transformateur torique
- 2 x 21 V / 160 VA
- PR1 - pont redresseur
- C1, C3 - 22 000 µF / 40 V - CO 39
- C2, C4 - 220 nF / 63 V
- F1, F2 - porte-fusible C.I. + fusible 3 A
- IC1 - LM 317 T
- R1 - 120 kΩ ±5 % / 0,5 W
- R2 - 1,2 kΩ ±5 % / 0,5 W
- RV1 - multitours 2 kΩ (25 tours)
- C5 - 10 µF / 25 V tantale goutte
- C6 - 1 µF / 35 V tantale goutte
- Led 1 - diode verte Ø 3 mm
condensateur C1. Faire de même avec le canon (+) de C3.
Le pont redresseur PR1 est vissé au coffret près du transformateur.
Prévoir au niveau des pastilles de raccordements des picots à souder. Comme pour les trois autres modules, on termine le câblage de cette alimentation en se débarrassant de la résine de la soudure et en pulvérisant un vernis protecteur.

La vérification du bon fonctionnement est fort simple, il n'y a qu'à raccorder les pattes (+) et (-) du pont redresseur PR1 aux picots +U et -U et le point milieu du transformateur (PM) au picot 0V. On doit alors mesurer des tensions continues symétriques de 30 V environ aux bornes des électrolytiques C1 et C3 ainsi qu'aux picots de sorties (+U) et (-U) par rapport à la masse (0 V).

On en profite alors pour agir sur RV1 afin d'obtenir une tension continue régulée de (+22 V) en sortie de IC1.

UNE PUISSANCE PONTABLE

L’appareil est doté de deux blocs amplificateurs à TDA 1514 A délivrant chacun environ 50 W eff. Il est aisé de passer de la stéréophonie à un étage unique de forte puissance en faisant transiter la modulation issue du mélangeur par un étage symétriseur. On dispose alors de deux signaux identiques, mais déphasés de 180° qui vont chacun attaquer l'entrée d’un bloc de puissance.

La figure 15 met en évidence nos propos et nous voyons que des deux charges utilisées en stéréophonie, charges référencées à la masse, nous n'en avons plus qu'une seule en intercalant le déphaseur que celle-ci est connectée uniquement aux bornes (+) des sorties HP.

Rien de plus simple à obtenir dans la pratique, puisque les fiches HP des blocs de puissance sont vissées directement aux dissipateurs.

Dans la pratique, comment à partir d’un signal en obtenir deux identiques, mais en opposition de phase ! C'est ce que nous faisons couramment avec nos amplis à tubes travaillant en push-pull, en utilisant soit un étage «cathodyne» ou un déphaseur de Schmitt. Ici, pour rester avec nos semi-conducteurs, nous utiliserons deux transistors plutôt que deux triodes, ce qu’indique notre figure 16.

• LE SCHÉMA

Un schéma fort simple, faisant appel à deux transistors NPN. Il s’agit d’un amplificateur différentiel constitué de T1 et T2 et dont la résistance d'émetteur est en partie commune.

Le signal est appliqué à l’une des bases, tandis que l’autre est portée à un potentiel fixe.

De ce fait, la tension de sortie différentielle qui est la tension de sortie existant
entre les collecteurs sera exactement la même que si la tension d’entrée était appliquée en symétrique sur les bases de T1 et de T2.
Par rapport à la masse, la tension alternative sur un collecteur est en opposition de phase avec celle sur l’autre collecteur. Le transistor T1 travaille en émetteur commun, tandis que T2 est monté en base commune, attaqué par l’émetteur. Les émetteurs subissent des excursions de tensions qui sont provoquées par celles de la base de T1 qui est commandée et fournissent une tension d’entrée à l’émetteur de T2, dont la base est portée à un potentiel fixe, simulant ainsi une entrée symétrique. Le courant circulant dans T1 et qui est dû au signal d’entrée produit une tension aux bornes de la résistance R6, ce qui en retour, produit un courant en opposition de phase dans le transistor T2.
L’amplitude du courant dans T1 étant toujours supérieure à celle du courant dans T2, pour un équilibre parfait du signal alternatif de sortie, il faut que la résistance de charge de T1 soit légèrement inférieure à celle placée dans le collecteur de T2, d’où la présence d’un ajustable RV1.
La tension différentielle de sortie qui est la tension existante entre les deux collecteurs, est pratiquement indépendante de la tension d’alimentation. Par contre, les signaux présents sur les collecteurs de T1 et T2 seront altérés par le niveau d’entrée si les caractéristiques des deux transistors ne sont pas identiques. Pour remédier à cet inconvénient, deux résistances de faible valeur ont été placées en contre-réaction dans les émetteurs de T1 et T2.
Pour s’affranchir de la légère dérivation potentielle continu des collecteurs de T1 et T2, les liaisons vers les entrées des blocs de puissance s’effectuent au travers des condensateurs C3 et C4.
La tension d’alimentation de ce symétriseur est préréglée sur la régulation +22 V. C’est à partir de cette même tension que nous actionnons un relais REED qui va aiguiller les signaux appliqués aux entrées des blocs de puissance. En position repos, deux signaux identiques sont dirigés vers les TDA 1514, nous sommes donc en fonctionnement stéréophonique (ou plutôt double mono, soit 2x50 Weff). Le basculement de la lame du relais va permettre de récupérer le signal en opposition de phase et donc cette fois-ci de driver les unités de puissance en symétrique. N’oublions pas qu’il y a lieu dans ce deuxième cas de connecter la charge unique aux sorties (+) des blocs de puissance à l’arrière de l’appareil. La bobine du relais REED est alimentée au travers d’un inverseur dont les contacts appliquent également +22 V à des diodes leds qui visualisent le mode de fonctionnement : double mono/ponctage.

LE CIRCUIT
Très simple à reproduire, il est proposé en figure 17.

LE CÂBLAGE
Peu de composants à mettre en place sur le C.I. La nomenclature donne toutes les indications nécessaires quant aux valeurs et tolérances de ceux-ci et le plan de câblage de la figure 18 permet leur insertion sans risque d’erreur.
Une petite précision au niveau des transistors T1 et T2. Il est préférable, afin de minimiser les dérives thermiques, de superposer les deux boîtiers TO92, en déposant sur leurs méplats, un peu de graisse au silicone.
Commencer par souder T1, puis plier ses pattes à 90°, boîtier plastique vers T2. Faire de même avec T2 pour que les deux méplats soient en contact et sou-
Le module est fixé au coffret grâce aux "oreilles" de l'inverseur en utilisant 2 petites vis de ø2 mm.

NOMENCLATURE DES COMPOSANTS

DIVERS
Coffret ISKRA Réf. 80 255
Dissipateur SEEM CO 116 P en 150 mm
Passe-fil ø 10 mm
5 boutons capuchons jaunes
2 boutons capuchons bleus
1 bouton capuchon rouge
2 fiches banane femelles châssis (rouge + noire)
5 fiches Jacks 6,35 pour châssis
Cordon secteur
Visserie de 3 et 4 mm
der les trois pattes. À l’ohmmètre, régler RV1 avant de le souder au C1 afin d’obtenir une résistance de 2,7 kΩ.

LE COFFRET

- **SON PERÇAGE**
 C’est à un coffret IDDM de Réf. 80360 qu’a été confié notre électronique. Un plan de perçages est communiqué en figure 19.
 Pour la face arrière, pas de difficulté, la précision n’a pas besoin d’être importante. Par contre, il en est tout autre pour la face avant. Il faut d’une part que les huit axes des potentiomètres du module mélangeur puissent tous traverser les trous forés à Ø7 mm avec un bon centrage pour chacun d’eux.
 Cette même précision est nécessaire pour les cinq trous de Ø11 mm auxquels viennent se visser les fiches Jack sou dées au module préamplificateur.
 Les distances entre les axes ont de plus des cotations « bizarres », étant donné que l’implantation du circuit imprimé a été faite au pas de 2,54 mm.
 Nous vous suggérons pour contourner le problème de procéder ainsi :
 - Tracer les lignes d’axes en abscisse à 20 et 33 mm sur le coffret.
 - Tracer la ligne d’axe en ordonnée à 25 mm. Nous obtenons les centres des deux premiers forages Ø7 mm et Ø11 mm.
 Se reporter à la figure 6, circuit imprimé du mélangeur. Superposer un morceau de calque et tracer des droites passant par la pastille du « curseur » de chaque potentiomètre.
 Il y a donc 8 droites parallèles à tracer. En se reportant à la figure 19, nous voyons que cinq de ces droites permettent également de déterminer les centres des forages des prises Jack à Ø11 mm. Il ne reste plus qu’à coller ou scotcher la feuille de calque pour pouvoir poïnçonner avec précision les centres des 13 trous à forer.
 Pour conserver une bonne précision, commencer par des forages de petits diamètres, à partir de Ø2 mm, en progressant ensuite avec un foret de 3, puis 4...
 Nous n’avons pas représenté le fond du coffret qui ne nécessite que le forage de deux trous à Ø3,5 mm, destinés à la fixation du module alimentation, et un trou à Ø4 mm pour le pont redresseur.

- **SA DÉCORATION**
 C’est le moment d’égaier la face avant en y déposant quelques transferts, ne serait-ce que pour repérer les différentes fonctions des organes de commande de l’appareil : volumes, graves, aigues...
 Le coffret existe en deux couleurs, aluminium ou noir. Les transferts auront donc une couleur en correspondance avec le coffret, noir sur noir ça ne peut « aller » ! Il existe des transferts DECAdry en noir, rouge, blanc ou or.

- **SON ÉQUIPEMENT**
 On commence par fixer le transformateur torique avec sa coupelle et ses deux rondelles en caoutchouc.
 Mettre en place également la prise secteur châssis 3 broches, l’interrupteur M/A en face avant gauche, le pont redresseur près du torique.
 Fixer les dissipateurs CO 1161 P à la face arrière en utilisant les rainures, de la visserie de 4 mm (avec des écrous à tête carrée pour faciliter le blocage), tout en passant les fils d’interconnexions par les trous de Ø10 mm.
 On se sert, pour le dissipateur de gauche et sa rainure de gauche, de la tête de la vis de fixation du transformateur torique. Bien serrer pour éviter les vibrations mécaniques.
 Mettre en place le module mélangeur qui, pour des raisons esthétiques, n’est pas maintenu par les canons des potentiomètres, mais par deux entretoises filetées mâle / femelle de 3 x 30 mm. On peut ainsi avec écrous, rondelles plates et contre-écrous, ajuster le bon emplacement (parallélisme) contre la face arrière. Les câbles blindés des modules amplificateurs passent au-dessus du module mélangeur, entre les canons des potentiomètres, tandis que les fils d’alimentation passent par le dessous en direction du module « filtrage et régulation +22 V ». Fixer le module alimentation en le surélevant de 10 mm au moyen d’entretoises.

LES INTERCONNEXIONS

Comme pour les réalisations précédentes, nous allons commencer par le primaire du transformateur en soudant l’un des deux fils à la prise secteur et l’autre à l’interrupteur. Relier l’autre cosse de cet interrupteur à l’autre cosse de la prise secteur.

Connecter les extrémités des secondaires (fils bleu et jaune sur notre transformateur) aux cosses (-) du pont redresseur. On peut utiliser des cosses Faston pour faciliter le travail.

Souder les deux autres fils des secondaires (rouge et gris pour nous) aux cosses prises en sandwich entre l’époxy et les canons des condensateurs C1 et C3 du module alimentation.

Souder un fil rouge de 1 mm² de section (ou une cosse sortie à fil rouge) au (+) du pont redresseur, puis faire de même avec un fil vert au (-) du pont redresseur.

Souder les autres extrémités de ces fils aux picots (+) et (-) du module alimentation, attention ceux situés avant les fusibles.

Cette tension étant celle destinée au module « Mélangeur », raccorder ce module à son alimentation.

Vous pouvez dès à présent en vérifier le bon fonctionnement.

Rien ne remplace le test dynamique avec un générateur BF et un oscilloscope. En injectant un signal de fréquence 1 kHz et de 280 mVc à c à l’une des entrées E1 à E5, en reliant la sonde du « scope » aux...
picots de sortie (S), vous pouvez effectuer quelques manipulations.
P8 à fond, ainsi que P1 (s’il s’agit de l’entrée E1), augmenter l’amplitude du signal jusqu’à l’écrétage afin de vérifier la bonne polarisation des transistors. L’alternance positive de la sinusoïde doit écrétter en même temps que l’alternance négative. On peut en profiter pour déterminer le gain en tension du mélangeur puisqu’à cette fréquence, le correcteur de tonalité est inopérant.
Passer sur le calibre 100 Hz du générateur, commuter la base de temps du «scope» en conséquence pour visualiser la trace et actionner le potentiomètre P6. On doit obtenir une variation d’amplitude du signal, une amplification pour une rotation de P6 dans le sens des aiguilles d’une montre et une atténuation pour une rotation dans le sens trigonométrique.
Même manipulation avec P7 en passant sur le calibre 10 kHz du générateur. On en profite pour vérifier qu’à cette fréquence, P6 est sans action.
Relier maintenant un bloc de puissance à son alimentation ± 30 V en soulevant les fils passés par le trou de ø10 mm aux picots correspondants.
Insérer les fusibles de 3A dans leurs supports.
Charger la sortie HP par une résistance de 8,2 Ω / 50 W et mettre sous tension. Vérifier que la tension aux bornes de la charge est bien nulle (ou de quelques millivolts).
Comme pour le module «Mélangeur», on peut effectuer quelques tests en dynamique en injectant un signal à l’entrée du câble blindé.
A la fréquence de 1 kHz, on doit mesurer une puissance de l’ordre de 40 Wef.
Faire de même pour le deuxième bloc de puissance.
Passons maintenant au module «Préamplificateur». Si les perçages ont été effectués avec précision, le vissage des 5 prises Jack à la face avant doit se faire sans aucune difficulté.
Les composants doivent être orientés vers l’extérieur du boîtier.
Relier ce module à l’alimentation ±30 V : picots (+U), 0V, (-U).
A la mise sous tension, on doit retrouver des potentiels de ±15 V, indiquant que les régulateurs IC6 et IC7 fonctionnent correctement, -15 V, aux pattes 4 des circuits intégrés IC1 à IC5 et +15 V aux pattes 7.
On peut alors passer à des essais en dynamique en injectant un signal de quelques millivols sur chaque fiche Jack et en contrôlant que l’amplification de 11 en tension est bien présente aux picots correspondants S1 à S5.
Relier chacune des entrées E1 à E5 du module «Mélangeur» aux sorties correspondantes S1 à S5 du module «Préamplificateur» .
On peut recontourer ensuite le trajet de la modulation de l’entrée sur un Jack jusqu’à la sortie du mélangeur.
Occupons-nous maintenant du module «Déphaseur». Celui-ci est maintenu en place en face avant, par les vis de l’inverseur à oreilles, deux petites vis de ø2 mm. Faire en sorte que les led L1 et L2 dépassent suffisamment de la face avant.
Les composants de ce module doivent se trouver orientés vers l’extérieur, le capot ôté.
Relier le module «Déphaseur» à l’alimentation régulée de +22 V.
A la mise sous tension de l’appareil, suivant la position du contact de I1, la led rouge ou la led verte doit s’allumer.
Injecter un signal aux picots (E) et vérifier que :
- La diode led verte L2 allumée, on observe deux signaux identiques aux sorties (S) du relais RL1.
- La diode led rouge L1 allumée, on observe deux signaux identiques mais en opposition de phase aux sorties (S) du relais.
La variation d’amplitude peut être ajustée au moyen de RV1, si un écart important est constaté. RV1 avait été réglé avant soudage au circuit imprimé à 2,7 kΩ, valeur de l’autre charge de T1 (la résistance R4).
Si tout se passe bien, raccorder les câbles blindés des blocs de puissance aux picots (S) du module «Déphaseur».
Positionner I1 pour que la led verte L2 s’allume. Nous sommes en configuration «double mono».
Charger les sorties des blocs de puissance par des résistances de 8,2 Ω / 50 W et remettre l’appareil sous tension.
Vérifier l’absence de tension continue aux bornes des résistances de charge.
Injecter un signal à l’entrée (E) du module «Déphaseur» et vérifier à l’oscilloscope qu’aux bornes des résistances de charge apparaissent bien deux signaux identiques.
Mettre l’appareil en position OFF.
Positionner I1 pour que la led rouge L1 s’allume. Nous sommes en configuration «pontage».
De ce fait, une seule résistance de charge est connectée aux sorties (+) des étages de puissance.
Mettre l’appareil en position ON.
Injecter un signal à l’entrée (E) du module «Déphaseur» et observer celui présent aux bornes de la charge. Les deux alternances doivent être identiques. Ne pas trop «pousser» le niveau du signal d’entrée car la résistance de charge ne fait que 50 W et nous pouvons espérer pouvoir obtenir aux bornes de celle-ci quelques 120 W !
Les interconnexions des modules «Préamplificateur» et «Mélangeur» sont établies.
Les interconnexions des modules «Amplificateur» et «Déphaseur» sont établies.
Il ne reste donc plus qu’à réunir le tout, c’est-à-dire, relier la sortie du «Mélangeur» à l’entrée du «Déphaseur» au moyen d’un câble blindé.
La modulation peut ainsi transiter de l’entrée d’un Jack J1 à J5 jusqu’aux haut-parleurs.
Relier la broche de «Terre» de la prise secteur au coffret au moyen d’une cosse à souder de ø3 mm insérée dans l’une des deux vis de fixation de la prise.
Notre appareil est terminé et il est tout de suite opérationnel.
AMPLI/PREAMPLI/MÉLANGEUR 5 ENTRÉES

MISE EN GARDE
A la mise sous tension de l’appareil, la section mélangeur étant alimentée en mono-tension +22 V, les condensateurs de liaison étant déchargés et se comportant donc comme des court-circuits, une tension positive est injectée à l’entrée du bloc de puissance si le potentiomètre de volume général P8 est plus ou moins «ouvert».
Nous avons relevé une tension de +0,9 V, le potentiomètre P8 à «fond».
Il est donc prudent et recommandé, bien que les TDA 1514A soient dotés d’un «Muting», de ne jamais mettre l’Ampli/mélangeur sous tension, le volume général, non à la masse, index du bouton tourné à fond vers la gauche.

QUELQUES MESURES
- **Sur charge de 8 Ω**
 - En version Stéréo
 - P_{\text{max}} à 1 kHz : 2 x 40 Weff (tension d’alimentation ±27 V)
 - Sensibilité d’entrée : 480 mVeff à l’entrée du bloc amplificateur
 - P_{\text{max}} idem de 100 Hz à 10 kHz
- **Sur charge de 8 Ω**
 - En version «Pontée»
 - P_{\text{max}} à 1 kHz : 118 Weff
- **Sur charge de 4 Ω**
 - En version stéréo
 - P_{\text{max}} à 1 kHz : 2 x 53 Weff (tension d’alimentation ±27 V)
 - P_{\text{max}} idem de 100 Hz à 10 kHz
 - Temps de montée à 10 kHz : 1 μs.

L’ÉCOUTE
Nous avons équipé l’étage d’entrée, le «Preamplificateur», de divers circuits intégrés, les supports DIP permettant aisément un échange.
Nous avons été surpris de constater que les meilleurs résultats étaient non pas obtenus avec les OPA604 mais avec les NE5534AN !

L’OPA604 est un peu plus bruyant (souffle) et avec certains spécimens il se manifeste des accrochages.
Nous avons injecté à l’entrée d’un Jack la modulation en provenance d’un lecteur de CD et commuté l’inverseur en version «Pontée». Avec une enceinte d’impédance 8 Ω nous avons fait de longues écoutes. Attention, vu l’amplitude du signal délivré par un lecteur de CD, le potentiomètre de volume du mélangeur de l’entrée concernée (J1 à J5) doit être très peu «ouvert».
L’écoute est excellente, très dynamique. Il est vrai que nous avons une réserve de puissance de 120 Weff et avec une enceinte de sonorisation à haut rendement, ça déçoiffe !
Le correcteur de tonalité est très efficace, ne pas en abuser, surtout pour le grave si vous n’avez pas un bon boomer.

Bernard Duval
La PROMO du nouveau Millénaire

LE TRIODE 845 - Led N°s 161 - 162 - 163

- Le transformateur d'alimentation (sans le 12 V) en cuve 1 000 F
- Les transformateurs de sortie en cuve 3 400 F
- Les tubes 845 appairés 880 F
- Les supports 280 F
- Les tubes ECL86 150 F
- Les supports NOVAL pour C.I. 44 F
- La self de filtration 290 F
- Le transformateur d'alimentation 2 x 12 V en boîte 510 F
- Les 2 condensateurs 2 200 μF / 450 V 1 140 F
- Les 2 condensateurs 150 000 μF / 16 V (fabrication française) 7 944 F

Frais de port 250 F
Total : 7 500 F
Cadeau du Millenium - 444 F

Total TTC 7 500 F

A.E.P ELECTRONIC

27 Av. de Pessicart - 06100 Nice - Tél. : 04 93 96 00 18 - Fax : 04 93 44 26 40
E-mail : aep1@club-internet.fr

TUBES ELECTRONIQUES
COMPOSANTS POUR AUDIOPHILES

Condensateurs bain d'huile, polyesters HT, transformateurs de sortie PLITRON, CME, résistances de puissance non inductives, châssis sur mesure, câbles télhons, connectique audio, accessoires de câblages, accessoires de laboratoire, maintenance et dépannage de tout appareil à tubes.

Dépôt vente, distributeur agrée
OUVERT DU LUNDI AU SAMEDI > Du lundi au vendredi de 9h30 à 12h30 et de 14h00 à 19h00 > Samedi de 9h30 à 12h30 et de 14h00 à 18h30

NOUS REALISONS SUR COMMANDE VOS CABLES AUDIO, VIDEO, TOUTS TYPES DE CONNECTICITS

TRANSFERATEURS DE SORTIE POUR AMPLI A TUBE "PUSH PULL"

Circuit magnétique "EF", Oré, Qualité cuivre recuit, 35/100e, enrochements "sandwich", présentation a encastrer capot noir (peinture époxy). Impédance secondaire 4,8,16hms. Bande passante 30/600000Hz. 35000hms, 500watts, 1,7ghz. 1,8000hms, 600watts, 1,7ghz. 8000hms, 800watts, 1,7ghz. 11500hms, 1000watts, 1,7ghz

TRANSFERATEURS D'ALIMENTATION POUR AMPLI A TUBE

La présentation à encastrer avec "capot peinture epoxy noir", Écran électromagnétique primaire et secondaire. Fabrication française. TTB 5x250W et 3x250W 750k, 0.5-6.3V, 1A, 6.3V 3A... 338F TTB100 2x250W et 2x300W 100k, 0.5-6.3V 2A, 6.3V 4A... 398F TTB120 2x250W et 2x300W 120k, 0.5-6.3V 3A, 6.3V 5A... 435F TTB150 2x250W et 2x300W 150k, 0.5-6.3V 3A, 6.3V 5A... 515F TTB200 2x250W et 2x300W 200k, 0.5-6.3V 4A, 6.3V 6A... 597F TTB300 2x250W et 2x300W 300k, 0.5-6.3V 4A, 6.3V 6A... 698F TTB400 2x250W et 2x300W 400k, 0.5-6.3V 6A, 6.3V 12A, 5V 5A... 915F

CONDENSATEURS POLYPROPYLENE MKP

Tolérance +/- 1%, résistance d'isolation 3000VDC, sortie axiale. Tension de service 630 Volts cc 680V(100%)/720V(150%)/850V(200%)/220V/240V/270V/300V/330V/380V/430V/470V(150%)/500V/560V/630V

CONDENSATEURS POLYPROPYLENE A ARMATURE ETAN

CONDENSATEURS non induits, insensibles à l'humidité. Comportant deux bandes d'étain séparées par deux films polypropylène dont leur apaisement définit la tension de service du condensateur. Forme cylindrique, sorties axiales par fil de cuivre étamé, obturation à la résine polyester.

Tension d'isolement 400 volts 4,07...10F 3,3F 12F 15F 29F 0,47F...8,5F 3,9F 13F 29F 0,22F...4,7F 4,7F 12F 29F 0,1F...50F 5,6F 15F 29F 1,5F...14F 6,8F 20F 33F 65F 1,8F...10F 8,2F 18F 47F 97F 2,2F...11F 10F 25F 68F 115F 2,7F 12F 12F 28F

CONDENSATEURS POLYPROPYLENE A ARMATURE ETAN

CONDENSATEURS non induits, insensibles à l'humidité. Comportant deux bandes d'étain séparées par deux films polypropylène dont leur apaisement définit la tension de service du condensateur. Forme cylindrique, sorties axiales par fil de cuivre étamé, obturation à la résine polyester.

Tension d'isolement 250 volts 0,1F...36F 0,47F 25F 0,35F 36F 0,68F 33F 1,5F 71F 0,22F 21F 1F 49F 1,8F 80F 0,33F 23F 2F 67F 2,2F 72F

CONDENSATEURS CHIMIQUES POLARISES (SPECIAL AUDIO)

Sorties radiales “BG”

Tension de service 16V de 10F...47F 3F 220F 48F 27F 21F 10F 3F 47F 65F 200F 79F 10F 47F 3F 220F 79F 33F 31F 10F 51F 47F 134F

CONDENSATEURS WIMA MKS

10F...400V 4F 1000V 4F 1000V 1000V 500V 2,2F 470F 1,5F 250F 250F 1,5F 250F 72F 10F 400V 4F 2,2F 470F 1,5F 250F 1000V 500V 2,2F 470F 1,5F 250F 72F

SUOUDURE A L’ARGENT

Idéal pour souder la connectique. Soudure argent 4% 1000 1mm... 49F Soudure argent 3% 5000 1mm... 255F Soudure argent 3% 0,8mm... 4F/mètre

CONDENSATEURS MKP HAUTE TENSION MARQUE ERO

CONDENSATEURS SANS axe n°1

1,5F...200V 14F 9,1F 200V 17F 2,3F...200V 14F 10F 200V 16F 7,5F...200V 15F 11,5F 200V 16F 8,2F...200V 17F 100F 16F 19F

CONDENSATEURS PAPIER HUILE L.C.C-SAFCO-TEREVOS

1,5F 450V 44F 4F 250V 250F 4F 250V 250F 4F 250V 250F 1,5F 500V 145F 6F 1000V 270F 10F 500V 320F

PAIEMENT : Chèque ou CB
ETRANGER : nous consulter

FRAIS D'EXPÉDITION (COOISSIMO) : 0-250G 20F 250-250G 28F 2KG-5KG 48F 5KG-10KG 58F
Je désire m'abonner à LED (6 n° par an)

FRANCE, BELGIQUE, SUISSE, LUXEMBOURG : 125 F AUTRES* : 175 F

* Ecrire en CAPITALES, S.V.P.

Nom :

Prénom :

N° :

Rue :

Code Postal :

Ville :

Le premier numéro que je désire recevoir est : N°...........

* Pour les expéditions «par avion» à l'étranger, ajoutez 50 F au montant de votre abonnement.

Ci-joint mon règlement par : chèque bancaire ☐ par CCP ☐ par mandat ☐

A retourner accompagné de votre règlement à :

Service Abonnements, EDITIONS PÉRIODES 5, boulevard Ney, 75018 Paris Tél. : 01 44 65 88 14

SERVICE CIRCUITS IMPRIMÉS

Support verre époxy FR4 16/10 - cuivre 35 µm

TRANSFORMATEUR D'ALIMENTATION

Fairie induction 1 Tesla - capoté - primaire 230 V avec écran

<table>
<thead>
<tr>
<th>LED No.</th>
<th>Secondaires</th>
<th>Poids</th>
<th>Prix TTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>138-140</td>
<td>2x300-3.0 V</td>
<td>3,0 kg</td>
<td>520 F</td>
</tr>
<tr>
<td>138</td>
<td>2x300-5 V</td>
<td>4,0 kg</td>
<td>590 F</td>
</tr>
<tr>
<td>136</td>
<td>2x300-9 V</td>
<td>6,0 kg</td>
<td>650 F</td>
</tr>
</tbody>
</table>

TRANSFORMATEUR DE SORTIE

230 V - 24 V - 12 V - 5 V pour adaptable

<table>
<thead>
<tr>
<th>LED No.</th>
<th>Impédance Prim</th>
<th>Impédance Sec</th>
<th>Puissance</th>
<th>Poids</th>
<th>Prix TTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>138-140</td>
<td>2x300-3.0 V</td>
<td>3,0 kg</td>
<td>520 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>2x300-5 V</td>
<td>4,0 kg</td>
<td>590 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>2x300-9 V</td>
<td>6,0 kg</td>
<td>650 F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAMPS

- ECD83
 - Prix Unité : 80 F
- EFD86
 - Prix Unité : 65 F
- ECD89
 - Prix Unité : 75 F
- EZ22
 - Prix Unité : 65 F
- EZ81

LAMPS APPARÉES (par prix de 2)

- JEU ELA 70
 - Prix Unité : 110 F
- JEU K185
 - Prix Unité : 65 F
- JEU S608 Soytek
 - Prix Unité : 120 F
- JEU K189
 - Prix Unité : 90 F
- JEU 845
 - Prix Unité : 90 F

CONDITIONS de VENTE

- France métropolitaine : règlement par chèque joint à la commande.
- Port : 10 F pour le premier envoi, 5 F pour chaque envoi supplémentaire.
- LAMPES : 50 F pour le premier envoi, 25 F pour chaque envoi supplémentaire.

SERVICE Abonnements EDITIONS PÉRIODES

5, boulevard Ney, 75018 Paris Tél. : 01 44 65 88 14
3ème PARTIE

GBF SYNTHÉTISÉ 0,1 Hz - 102,4 kHz
2 SORTIES MULTIFONCTIONS
A DÉPHASAGE PROGRAMMÉ
OU SINUS VOBULÉ AVEC MARQUEUR

Nous voici arrivés au terme de la réalisation de notre «Générateur BF Synthétisé» avec cette troisième partie consacrée à la réalisation et le câblage des trois dernières cartes. Cet appareil peut paraître complexe à entreprendre, vu la multitude de circuits imprimés «double face» qu’il met en œuvre. Toutefois, la complexité n’est qu’apparente, étant donné que les cartes s’enfilent les unes dans les autres avec au final peut de réglages à effectuer.
De plus, l’auteur met à la disposition des lecteurs la pièce maîtresse de ce «Générateur», la ROM programmée et ce à un prix très attractif.

Oyons maintenant, pour aborder cette dernière partie, la carte YOSC. Ce module équipé de deux connecteurs encartables au pas de 3,96 permet de recevoir les cartes «SORTIES» et «PHASE». Le câblage est donc inexistant, les interconnexions se faisant directement par les pistes cuitvées des circuits imprimés, via les connecteurs.
Cette même «astuce» était utilisée, rappelons-le, dans notre précédent numéro, avec le module «CAPRI» qui recevait par encartage également les modules «FILTRES» et «SEQVOB».

La complexité de cette étude n’est donc bien qu’apparente.

11°) On attaque la carte YOSC (figures 42, 43 et 44) par l’alim. de TR3. Puis on passe aux salves avec les CI42 et 43. On relie YOSC à CAPRI par N3, un fil de masse et un fil S1c. Pour tester les salves, il faut d’une part relier la borne 2 de CI43 à la masse pour ne pas s’encombrer à ce stade de P1; d’autre part ajouter une liaison de masse prévue par la carte SORTIES. Ce n’est pas une maladresse de réalisation, mais une précaution pour préserver une masse haute qualité (MHQ) de courants notables.

Pour faire un bon appareil, il ne suffit pas de bons schémas, il faut aussi des circuits bien dessinés.

12°) Connecteur pour carte SORTIES et réalisation de cette carte (figures 45, 46 et 47). On relie provisoirement la sortie de CI55 à R44. On doit obtenir en sortie le signal entre -11,5 et 11,5V environ si on règle Aj3. En portant R83 à 18V, il sera ramené de 0 à 11,5V.

14°) On termine la carte phase. On peut vérifier le gain, la phase et la sortie Y.

15°) Réalisation de la façade (figure 51) et mise en boîte de l’appareil.

16°) Réglages.

Aj1 : on peut d’abord contrôler le bon calibrage de l’oscillo, en demandant deux triangles identiques sur les deux voies avec l’amplitude maximum. Les deux traces doivent pouvoir être superposées, sinon on modifie légèrement le gain non calibré sur une voie pour y parvenir.
Puis on demande des créneaux (350) sur les deux voies, mais avec déphasage de 180°. Cette fois, on doit obtenir un réglage de Aj1 deux traces qui s’imbriquent en formant deux lignes horizontales.

Aj2 et Aj2b : on demande deux fonctions qui ont un minimum à dérivée nulle, par exemple le sinus. En position «zéro min» et avec une forte sensibilité de l’oscillo en cm/V, on règle le minimum a zéro.

Aj3 et Aj3b : on demande deux fonctions qui ont des centres de symétrie, triangle ou sinus par exemple, et on règle à zéro ces centres, avec KNIV en position «zéro moy».
Figure 42

Figure 43
GBF SYNTHÉTISÉ 0,1 Hz - 102,4 kHz

NOMENCLATURE DES COMPOSANTS

YOSC

CI42 : HCT08
CI43 : HCT4051
CI58 : AD823
CI59 : LF356
CI64 : 40106
CI65 : TL082
CI66 : 4053
CI72 : 7818
CI73 : 78L05
CI74 : 7918
CI75 : 7812
CI77 : 7912
CI78 : 79L05

D7, D8 : 1N4148
D19 - D26 : 1N4004

R41 : 1,8 kΩ
R42 : 5,6 kΩ
R99 - 103 : 20 kΩ
R104, R105 : 10 kΩ
R123, R124 : 10 kΩ
R125, R126 : 100 kΩ
R127 : 150 Ω
R128 : 330 kΩ
R129 : 150 Ω

A/1 : 2 kΩ

C16 : 10 μF tantale
C44, C45 : 10 nF
C60, C61 : 2200 μF / 35 V
C62, C63 : 220 nF
C64 : 10 μF / 25 V
C65, C66 : 1000 μF / 25 V
C67 : 220 nF
C68, C69 : 10 μF tantale

TR4 : 2х12V, 3VA
1 Connecteur 15 points pas 3,96
1 Connecteur 10 points pas 3,96
1 Bornier 3 points
1 HE-10 mâle 2x5 points
13 Picots

La carte «YOSC» est équipée de deux connecteurs encartables qui reçoivent chacun les modules «SORTIES» ou «PHASE».
Toutes les interconnexions se font donc directement par leurs intermédiaires et sans risque d’erreur possible de câblage.
UNE PROFUSION DE FONCTIONS

Figure 45

Figure 47

NOMENCLATURE DES COMPOSANTS

SORTIES

CI53, 55, 53b, 55b : LM6361 (disp. Selectronic)
CI54, 54b : TL081
CI56, 56b : CD4053
T9, T9b : BC547
T10, T10b : BC557
T11, T11b : 2N2904
T12, T12b : 2N2219

R74, R75, R74b, R75b : 10 kΩ / 1 %
R76, R77, R76b, R77b : 1 kΩ
R78, R78b : 68 kΩ
R79, R79b : 18 kΩ
R80, R80b : 4,7 kΩ
R81, R81b : 20 kΩ
R82, R82b : 5,81 kΩ / 1 %
R83, R83b : 330 Ω
R84, R84b : 88 Ω
R85, R85b, R86, R86b : 3,3 kΩ
R87, R88, R87b, R88b : 47 Ω / 1W
R89, R90, R89b, R90b : 4,7 Ω
R91, R92, R91b, R92b : 100 Ω / 1W
R95, R96, R95b, R96b : 270 Ω
R97, R97b : 220 Ω
AJ12, AJ12b : 10 kΩ
AJ3, AJ3b : 10 kΩ

C41, C41b : 10 μF tantale

9 Picots
CONCLUSIONS

Un GBF synthétisé a des différences très typées par rapport aux GBF analogiques basés sur un oscillateur.

Un avantage est la stabilité de fréquence, qui ne se mesure pas, on la demande et elle est livrée garantie. C'est mieux, mais en fait ce n'est pas un avantage très important sur les GBF pourvus d'une mesure intégrée de fréquence et d'un réglage fin, comme il en a été proposé dans LED.

Un désavantage important est la limite maximum en fréquence, puisqu'une limite pratique concerne les commutations, celle du signal devant être très inférieure.

Un autre désavantage est cette succession de paliers qui fausse totalement la dérivée.

C'est pourquoi, il nous a semblé qu'un GBF synthétisé monosortie limité aux fonctions de base (sinus, triangle, rectangle, salves) n'aurait pas d'intérêt. Un générateur de fonctions le fait mieux (sauf peut-être le sinus), plus facilement, et à des fréquences bien supérieures.

Il était donc impératif d'utiliser à plein les possibilités de la synthèse : nombreuses...
UN PROFOUSION DE FONCTIONS

NOMENCLATURE DES COMPOSANTS

PHASE

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI57, 60, 57b, 60b</td>
<td>OPA604</td>
</tr>
<tr>
<td>CI61, 61b</td>
<td>LM13700</td>
</tr>
<tr>
<td>CI62</td>
<td>HCT86</td>
</tr>
<tr>
<td>CI63</td>
<td>4013</td>
</tr>
<tr>
<td>CI76</td>
<td>78L05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T13, T13b</td>
<td>BC557</td>
</tr>
<tr>
<td>D5, D6, D9, D10, D11, D12, D9b, D10b, D11b, D12b</td>
<td>1N4148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R98</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>R106, R106b</td>
<td>22 kΩ</td>
</tr>
<tr>
<td>R107, R107b</td>
<td>56 kΩ</td>
</tr>
<tr>
<td>R108, R109</td>
<td>12 kΩ</td>
</tr>
<tr>
<td>R110, R111, R110b, R111b</td>
<td>619 Ω / 1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R112, R112b</td>
<td>2.7 kΩ</td>
</tr>
<tr>
<td>R113, R113b</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>R114, R115, R114b, R115b</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>R116, R116b</td>
<td>2 kΩ</td>
</tr>
<tr>
<td>R117, R117b</td>
<td>2.7 kΩ</td>
</tr>
<tr>
<td>R118, R118b</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>R119, R120, R119b, R120b</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>R121, R121b</td>
<td>2.7 kΩ</td>
</tr>
<tr>
<td>R122, R122b</td>
<td>1 kΩ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJ4</td>
<td>100 kΩ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C43</td>
<td>470 nF</td>
</tr>
<tr>
<td>C46, C46b</td>
<td>470 nF</td>
</tr>
<tr>
<td>C47, C48, C47b, C48b</td>
<td>10 μF tantale</td>
</tr>
<tr>
<td>C70</td>
<td>1 μF tantale</td>
</tr>
</tbody>
</table>

2 Picots
fonctions et deux sorties de déphasage commandé.
En vovoilation, cet appareil a de très bonnes propriétés :
* Parfaite constance de l'amplitude,
 même avec le filtrage.
* Fréquences limite et fréquence de marquage programmées.
* Pas de limite à l'excursion de fréquence.
* Exactitude et finesse du marquage.
C'est une propriété du procédé de marquage indiqué à propos du GBF précédent, valable pour tout GBF vobulé.

LES INTERCONNEXIONS FACE AVANT/MODULES

La face avant étant équipée de ses différentes commandes (interrupteurs, potentiomètres) ainsi que des fiches bananes féminales, on peut entreprendre les différentes interconnexions.

En se reportant à la figure 52, on remarque que chaque départ de fil est repéré et qu'il est muni à l'extrémité non soudée (ce qui est évident) d'une cosse femelle, laquelle ira s'enficher dans le picot mâle soudé au module concerné. Ainsi, prenons en exemple l'interrupteur KGφ.

Deux fils partent de cette commande, l'un allant au +12 V et l'autre à la résistance R128.

COMMENT SE PROCURER LA ROM PROGRAMMÉE ?

L'auteur peut fournir une ROM neuve programmée et testée. Il suffit d'envoyer une demande accompagnée d'un chèque de 200 F.

Mr Georges Lavertu
8 Côte Rouset, 69540 Irigny

Peut également être fournie une disquette contenant le listing transformé en fichier word2 à partir du programmeur original, pour 120 F. Des commentaires permettent de suivre le déroulement du programme. Le réalisateur devra réécrire ce listing de quelques 6 000 lignes sur son programmeur ; l'intérêt est évidemment de pouvoir le modifier, par exemple en changeant de fonctions ou de dialogue, ou pourquoi pas d'améliorer certains algorithmes.

NOMENCLATURE DES COMPOSANTS

LES ELEMENTS DE FACADE

KD1, KNIV2, KS1, KS2, KFIL1, KFIL2, KGφ : Inverseur simple à levier
P1 : 470 Ω Lin
P2 : 10 kΩ Lin
P3, P3b : 47 kΩ Lin
RESET : Poussoir à contact fugitif 1T
6 Douilles banane
R93, R93b : 470 Ω
R94, R94b : 56 Ω
R132 : 2,2 kΩ

QUELQUES PRÉCISIONS

Dans notre n°162 il y aurait à apporter les corrections suivantes :
Page 15 et 2ème colonne : de 01 à 10 : Nx° (au lieu de Nx)
Page 23 et figure 8 : D°4 : kA et non KA
D°5 : kB et non KB
Page 26 et figure 17 : supprimer les n° de pattes sur RLC1
Page 21 et 3ème colonne : avec une 128, cette patte représente PGM, et doit être reliée au (+) (à la masse pour la programmation).
Page 24 et figure 11 : les pattes 4 des CI 27, 28, 29 et 30 ne sont pas reliées à la masse (supprimer cette liaison)

Georges Lavertu

48
UNE PROFUSION DE FONCTIONS
Avez-vous déjà eu l'embarras du (bon) choix ?